凸四邊形ABCD中,∠DAB=∠BCD=900, ∠CDA∶∠ABC=2∶1,AD∶CB=1∶,則∠BDA=[       ]

A.30°       B.45°.  C.60°.      D.不能確定

由圖6可知:當(dāng)∠BDA=60°時(shí),∠CDB

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

9、邊長(zhǎng)都是質(zhì)數(shù)的凸四邊形ABCD中,AB∥CD,AB+BC=AD+DC=20.AB>BC,則BC+AD=(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

定理:圖1,如果∠ADB=∠ACB,那么四邊形ABCD有外接圓,也叫做A,B,C,D四點(diǎn)共圓.(注:本定理不需要證明)
(1)圖2,△ABC中,AC=BC,點(diǎn)E,F(xiàn)分別在線段AC,BC上運(yùn)動(dòng)(不與端點(diǎn)重合),而且CE=BF,O是△ABC的外心(外接圓的圓心,它到三角形三個(gè)頂點(diǎn)距離相等),試證明C,E,O,F(xiàn)四點(diǎn)共圓.(注:可以使用上述定理,也可以采用其他方法)
精英家教網(wǎng)
如果將問(wèn)題2中的點(diǎn)C“分離”成兩個(gè)點(diǎn),那么就有:
(2)圖3,在凸四邊形ABCD中,AD=BC,點(diǎn)E,F(xiàn)分別在線段AD,BC上運(yùn)動(dòng)(不與端點(diǎn)重合),而且DE=BF,直線AC,BD相交于點(diǎn)P,直線EF,BD相交于點(diǎn)Q,直線EF,AC相交于點(diǎn)R.當(dāng)點(diǎn)E,F(xiàn)分別在線段AD,BC上運(yùn)動(dòng)(不與端點(diǎn)重合)時(shí),探究△PQR的外接圓是否經(jīng)過(guò)除點(diǎn)P外的另一個(gè)定點(diǎn)?如果是,請(qǐng)給出證明,并指出是哪個(gè)定點(diǎn);如果不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

20、如圖,凸四邊形ABCD中,AB∥CD,且AB+BC=CD+AD.求證:ABCD是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

12、如圖,已知在凸四邊形ABCD中,對(duì)角線AC、BD相交于O,且AC⊥BD,OA>OC,OB>OD.
求證:BC+AD>AB+CD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,凸四邊形ABCD中,點(diǎn)E在邊CD上,連接AE、BE.給出下列五個(gè)關(guān)系式:①AD∥BC;②DE=EC;③∠1=∠2;④∠3=∠4;⑤AD+BC=AB.將其中的三個(gè)關(guān)系式作為已知條件、另外兩個(gè)關(guān)系式作為結(jié)論,可以構(gòu)成一些命題(下面各小題的命題須符合此要求).
(1)共計(jì)能夠成
10
10
個(gè)命題;
(2)寫(xiě)出三個(gè)真命題:
①如果
、
,那么
、

②如果
、
,那么
;
③如果
、
,那么
、

請(qǐng)選擇上述三個(gè)命題中的一個(gè)寫(xiě)出它是真命題的理由:
證明:我選擇證明命題
(填序號(hào)),理由如下:
(3)請(qǐng)寫(xiě)出一個(gè)假命題(不必說(shuō)明理由):
如果
、
、
,那么

查看答案和解析>>

同步練習(xí)冊(cè)答案