【題目】如圖,在Rt△ABC中,∠ACB=90°,BC>AC,以斜邊AB 所在直線為x軸,以斜邊AB上的高所在直線為y軸,建立直角坐標(biāo)系,若OA2+OB2= 17, 且線段OA、OB的長度是關(guān)于x的一元二次方程x2-mx+2(m-3)=0的兩個(gè)根.
(1)求C點(diǎn)的坐標(biāo);
(2)以斜邊AB為直徑作圓與y軸交于另一點(diǎn)E,求過A、B、E 三點(diǎn)的拋物線的關(guān)系式,并畫出此拋物線的草圖.
(3)在拋物線上是否存在點(diǎn)P,使△ABP與△ABC全等?若存在,求出符合條件的P點(diǎn)的坐標(biāo);若不存在,說明理由.
【答案】(1)C(0,2);(2)y=.(3)(0,-2)和(3,-2)
【解析】本題是二次函數(shù)與圓以及全等三角形相結(jié)合的題目,難度較大
(1)線段OA、OB的長度是關(guān)于x的一元二次方程x2-mx+2(m-3)=0的兩個(gè)根.根據(jù)韋達(dá)定理就可以得到關(guān)于OA,OB的兩個(gè)式子,再已知OA2+OB2=17,就可以得到一個(gè)關(guān)于m的方程,從而求出m的值.求出OA,OB.根據(jù)OC2=OAOB就可以求出C點(diǎn)的坐標(biāo);
(2)由第一問很容易求出A,B的坐標(biāo).連接AB的中點(diǎn),設(shè)是M,與E,在直角△OME中,根據(jù)勾股定理就可以求出OE的長,得到E點(diǎn)的坐標(biāo),利用待定系數(shù)法就可以求出拋物線的解析式;
(3)E點(diǎn)就是滿足條件的點(diǎn).同時(shí)C,E關(guān)于拋物線的對稱軸的對稱點(diǎn)也是滿足條件的點(diǎn).
解:(1)線段OA,OB的長度是關(guān)于x的一元二次方程x2-mx+2(m-3)="0" 的兩個(gè)根,
∴
又∵OA2+OB2=17,∴(OA+OB)2-2·OA·OB=17.③
把①,②代入③,得m2-4(m-3) =17,∴m2-4m-5=0.解之,得m=-1或m=5.
又知OA+OB=m>0,∴m=-1應(yīng)舍去.
∴當(dāng)m=5時(shí),得方程:x2-5x+4=0,解之,得x=1或x=4.
∵BC>AC,∴OB>OA,∴OA=1,OB=4,
在Rt△ABC中,∠ACB=90°,CO⊥AB,
∴OC2=OA·OB=1×4=4.∴OC=2,∴C(0,2)
(2)∵OA=1,OB=4,C,E兩點(diǎn)關(guān)于x軸對稱,
∴A(-1,0),B(4,0),E(0,-2).
設(shè)經(jīng)過A,B,E三點(diǎn)的拋物線的關(guān)系式為
y=ax2+bx+c,則,解之,得
∴所求拋物線關(guān)系式為y=.
(3)存在.∵點(diǎn)E是拋物線與圓的交點(diǎn).
∴Rt△ACB≌Rt△AEB,∴E(0,-2)符合條件.
∵圓心的坐標(biāo)(,0 )在拋物線的對稱軸上.
∴這個(gè)圓和這條拋物線均關(guān)于拋物線的對稱軸對稱.
∴點(diǎn)E關(guān)于拋物線對稱軸的對稱點(diǎn)E′也符合題意.
∴可求得E′(3,-2).
∴拋物線上存在點(diǎn)P符合題意,它們的坐標(biāo)是(0,-2)和(3,-2)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若△ABC的每條邊長增加各自的10%得到△A′B′C′,則∠B′的度數(shù)與其對應(yīng)角∠B的度數(shù)相比( )
A.增加了10%
B.減少了10%
C.增加了(1+10%)
D.沒有改變
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市測一周PM2.5的月均值(單位:微克/立方米)如下:50,40,73,50,37,50,40,這組數(shù)據(jù)的中位數(shù)和眾數(shù)分別是( 。
A. 50和50B. 50和40C. 40和50D. 40和40
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知下表:
x | 0 | 1 | 2 |
ax2 | 1 | ||
ax2+bx+c | 3 | 3 |
(1)求a、b、c的值,并在表內(nèi)空格處填入正確的數(shù);
(2)請你根據(jù)上面的結(jié)果判斷:
①是否存在實(shí)數(shù)x,使二次三項(xiàng)式ax2+bx+c的值為0?若存在,求出這個(gè)實(shí)數(shù)值;若不存在,請說明理由.
②畫出函數(shù)y=ax2+bx+c的圖象示意圖,由圖象確定,當(dāng)x取什么實(shí)數(shù)時(shí),ax2+ bx+c>0?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=2x2-kx-1與x軸兩交點(diǎn)的橫坐標(biāo),一個(gè)大于2,另一個(gè)小于2,試求k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】班長去商店買賀卡50張,每張標(biāo)價(jià)2元,若按標(biāo)價(jià)的九折優(yōu)惠,則班長應(yīng)付( )
A. 45元B. 100元C. 10元D. 90元
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是一塊銳角三角形余料,邊BC=120mm,高AD=80mm,要把它加工成長方形零件PQMN,使長方形PQMN的邊QM在BC上,其余兩個(gè)頂點(diǎn)P,N分別在AB,AC上,求這個(gè)長方形零件PQMN面積S的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com