(2008•吉林)如圖①,在長為6厘米,寬為3厘米的矩形PQMN中,有兩張邊長分別為二厘米和一厘米的正方形紙片ABCD和EFGH,且BC且在PQ上,PB=1厘米,PF=厘米,從初始時刻開始,紙片ABCD沿PQ以2厘米每秒的速度向右平移,同時紙片EFGH沿PN以1厘米每秒的速度向上平移,當C點與Q點重合時,兩張圖片同時停止移動,設(shè)平移時間為t秒時,(如圖②),紙片ABCD掃過的面積為S1,紙片EFGH掃過的面積為S2,AP,PG,GA所圍成的圖形面積為S(這里規(guī)定線段面積為零,掃過的面積含紙片面積).解答下列問題:
(1)當t=時,PG=______
【答案】分析:(1)PG==,PA==2,AG==,∴PA=PG+GA.
(2)由(1)得當t=0.5時,G在AP上,那么可分G在△APB內(nèi)和△APB外兩種情況進行解答.
(3)按等量關(guān)系列出等式,根據(jù)t的取值范圍得到所求.
解答:解:(1)當t=時,PG=,PA=2,此時PA=PG+GA;(各1分)

(2)①當0≤t≤0.5時,連接GB

S△APG=S△APB-S△PGB-S△AGB
=×2(2t+1)-(2t+1)(t+0.5)-×2×2t
=-t2-t+(2分)
②當0.5<t≤1.5時,過A作AK⊥PN于K,連接KG

S△APG=S△APK-S△PGK-S△AGK
=×2(2t+1)-(2t+1)(1.5-t)-×1×2
=t2+t-(2分)

(3)存在
S1=2(2t+2)=4t+4,S2=t+1(1分)
若S1+S2=4S+5,則
4t+4+t+1=4(t2+t-)+5,即4t2-t-3=0(1分)
∴t1=(舍去),t2=1(1分)
即當t=1時,S1+S2=4S+5.
點評:本題考查運動過程中面積的變化形式.注意掃過的面積應是原來正方形的面積+掃過矩形的面積.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2008年全國中考數(shù)學試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

(2008•吉林)如圖,在平面直角坐標系中,矩形OABC的頂點A(0,3),C(-1,0),將矩形OABC繞原點O順時針方向旋轉(zhuǎn)90度,得矩形OA′B′C′矩形設(shè)直線BB’與x軸交于點M,與y軸交于點N,拋物線經(jīng)過點C,M,N點.
解答下列問題:
(1)設(shè)直線BB′表示的函數(shù)解析式為y=mx+n,求m,n;
(2)求拋物線表示的二次函數(shù)的解析式;
(3)在拋物線上求出使S△PB‘C‘=S矩形OABC的所有點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:2008年吉林省中考數(shù)學試卷(解析版) 題型:解答題

(2008•吉林)如圖,在平面直角坐標系中,矩形OABC的頂點A(0,3),C(-1,0),將矩形OABC繞原點O順時針方向旋轉(zhuǎn)90度,得矩形OA′B′C′矩形設(shè)直線BB’與x軸交于點M,與y軸交于點N,拋物線經(jīng)過點C,M,N點.
解答下列問題:
(1)設(shè)直線BB′表示的函數(shù)解析式為y=mx+n,求m,n;
(2)求拋物線表示的二次函數(shù)的解析式;
(3)在拋物線上求出使S△PB‘C‘=S矩形OABC的所有點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:2011年中考數(shù)學總復習專題:解直角三角形(解析版) 題型:解答題

(2008•吉林)如圖所示,張伯伯利用假日在某釣魚場釣魚,風平浪靜時,魚漂露出水面部分AB=6cm,微風吹來,假設(shè)鉛垂P不動,魚漂移動了一段距離BC,且頂端恰好與水面齊平,(即PA=PC)水平l與OC的夾角α為8°(點A在OC上),求鉛錘P處的水深h.

查看答案和解析>>

科目:初中數(shù)學 來源:2008年全國中考數(shù)學試題匯編《銳角三角函數(shù)》(06)(解析版) 題型:解答題

(2008•吉林)如圖所示,張伯伯利用假日在某釣魚場釣魚,風平浪靜時,魚漂露出水面部分AB=6cm,微風吹來,假設(shè)鉛垂P不動,魚漂移動了一段距離BC,且頂端恰好與水面齊平,(即PA=PC)水平l與OC的夾角α為8°(點A在OC上),求鉛錘P處的水深h.

查看答案和解析>>

科目:初中數(shù)學 來源:2008年吉林省中考數(shù)學試卷(解析版) 題型:填空題

(2008•吉林)如圖,在△ABC中,D,E,F(xiàn),分別時AB,BC,AC,的中點,若平移△ADF平移,則圖中能與它重合的三角形是    .(寫出一個即可)

查看答案和解析>>

同步練習冊答案