【題目】如圖,正方形OABC的邊OA,OC在坐標(biāo)軸上,點B的坐標(biāo)為(﹣4,4).點P從點A出發(fā),以每秒1個單位長度的速度沿x軸向點O運動;點Q從點O同時出發(fā),以相同的速度沿x軸的正方向運動,規(guī)定點P到達(dá)點O時,點Q也停止運動.連接BP,過P點作BP的垂線,與過點Q平行于y軸的直線l相交于點D.BD與y軸交于點E,連接PE.設(shè)點P運動的時間為t(s).
(1)∠PBD的度數(shù)為 ,點D的坐標(biāo)為 (用t表示);
(2)當(dāng)t為何值時,△PBE為等腰三角形?
(3)探索△POE周長是否隨時間t的變化而變化?若變化,說明理由;若不變,試求這個定值.
【答案】(1)45°,(t,t);(2)t為4秒或()秒;(3)△POE周長是定值,該定值為8.
【解析】試題分析:(1)易證△BAP≌△PQD,從而得到DQ=AP=t,從而可以求出∠PBD的度數(shù)和點D的坐標(biāo).
(2)由于∠EBP=45°,故圖1是以正方形為背景的一個基本圖形,容易得到EP=AP+CE.由于△PBE底邊不定,故分三種情況討論,借助于三角形全等及勾股定理進(jìn)行求解,然后結(jié)合條件進(jìn)行取舍,最終確定符合要求的t值.
(3)由(2)已證的結(jié)論EP=AP+CE很容易得到△POE周長等于AO+CO=8,從而解決問題.
試題解析:(1)如圖1,由題可得:AP=OQ=1×t=t(秒)
∴AO=PQ.
∵四邊形OABC是正方形,∴AO=AB=BC=OC,∠BAO=∠AOC=∠OCB=∠ABC=90°.
∵DP⊥BP,∴∠BPD=90°,∴∠BPA=90°﹣∠DPQ=∠PDQ.
∵AO=PQ,AO=AB,∴AB=PQ.
在△BAP和△PQD中,∵∠BAP=∠PQD,∠BPA=∠PDQ,AB=PQ,∴△BAP≌△PQD(AAS),∴AP=QD,BP=PD.∵∠BPD=90°,BP=PD,∴∠PBD=∠PDB=45°.∵AP=t,∴DQ=t,∴點D坐標(biāo)為(t,t).
故答案為:45°,(t,t).
(2)①若PB=PE,由△PAB≌△DQP得PB=PD,顯然PB≠PE,∴這種情況應(yīng)舍去.
②若EB=EP,則∠PBE=∠BPE=45°,∴∠BEP=90°,∴∠PEO=90°﹣∠BEC=∠EBC.
在△POE和△ECB中,∵∠PEO=∠EBC,∠POE=∠ECB,EP=BE,∴△POE≌△ECB(AAS),∴OE=CB=OC,∴點E與點C重合(EC=0),∴點P與點O重合(PO=0).
∵點B(﹣4,4),∴AO=CO=4.此時t=AP=AO=4.
③若BP=BE,在Rt△BAP和Rt△BCE中,∵BA=BC,BP=BE,∴Rt△BAP≌Rt△BCE(HL),∴AP=CE.
∵AP=t,∴CE=t,∴PO=EO=4﹣t.
∵∠POE=90°,∴PE==.
延長OA到點F,使得AF=CE,連接BF,如圖2所示.在△FAB和△ECB中,∵AB=CB,∠BAF=∠BCE=90°,AF=CE,∴△FAB≌△ECB,∴FB=EB,∠FBA=∠EBC.
∵∠EBP=45°,∠ABC=90°,∴∠ABP+∠EBC=45°,∴∠FBP=∠FBA+∠ABP
=∠EBC+∠ABP=45°,∴∠FBP=∠EBP.
在△FBP和△EBP中,
∴△FBP≌△EBP(SAS),∴FP=EP,∴EP=FP=FA+AP=CE+AP,∴EP=t+t=2t,∴=2t.解得:t=,∴當(dāng)t為4秒或()秒時,△PBE為等腰三角形.
(3)∵EP=CE+AP,∴OP+PE+OE=OP+AP+CE+OE=AO+CO=4+4=8,∴△POE周長是定值,該定值為8.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列各式正確的是( )
A. -32+(-3)2=0 B. -32-32=0
C. -32-(-3)2=0 D. (-3)2+32=0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知⊙O的半徑r=3,設(shè)圓心O到一條直線的距離為d,圓上到這條直線的距離為2的點的個數(shù)為m,給出下列命題:
①若d>5,則m=0;②若d=5,則m=1;③若1<d<5,則m=3;④若d=1,則m=2;⑤若d<1,則m=4.
其中正確命題的個數(shù)是( )
A. 1 B. 2 C. 3 D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方體的頂點數(shù)、面數(shù)和棱數(shù)分別是( )
A. 8、6、12 B. 6、8、12 C. 8、12、6 D. 6、8、10
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個整式減去a2-2ab+b2后所得的結(jié)果是2ab,則這個整式是( )
A. a2+b2 B. a2-b2 C. a2-4ab+b2 D. a2+4ab+b2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將正比例函數(shù)y=2x的圖象向下平移2個單位長度,所得圖象對應(yīng)的函數(shù)解析式是( 。
A. y=2x-1B. y=2x+2
C. y=2x-2D. y=2x+1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】冬季某天我國三個城市的最高氣溫分別是﹣10℃,1℃,﹣7℃,它們?nèi)我鈨沙鞘兄凶畲蟮臏夭钍牵?)
A. 11℃ B. 17℃ C. 8℃ D. 3℃
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列各方程中,是一元二次方程的是( )
A. 3x+2=3 B. x3+2x+1=0 C. x2=1 D. x2+2y=0
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com