【題目】如圖,過(guò)邊長(zhǎng)為3的等邊三角形ABC的邊AB上一點(diǎn)P,作PEACE,QBC延長(zhǎng)線上一點(diǎn),問(wèn):若PACQ時(shí),連接PQAC邊于D,求DE的長(zhǎng)?

【答案】

【解析】

過(guò)PPFBCACF,得出等邊三角形APF,推出AP=PF=QC,根據(jù)等腰三角形性質(zhì)求出EF=AE,證PFD≌△QCD,推出FD=CD,推出DE= AC即可.

過(guò)PPFBCACF


PFBC,ABC是等邊三角形,
∴∠PFD=QCD,APF是等邊三角形,
AP=PF=AF,
PEAC
AE=EF,
AP=PF,AP=CQ
PF=CQ
PFDQCD中,

∴△PFD≌△QCDAAS),
FD=CD,
AE=EF
EF+FD=AE+CD,
AE+CD=DE=AC
AC=3,
DE=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,Am,0),Bn,0),C(﹣1,2),且滿足式|m+2|+m+n220

1)求出m,n的值.

2)①在x軸的正半軸上存在一點(diǎn)M,使COM的面積等于ABC的面積的一半,求出點(diǎn)M的坐標(biāo);

②在坐標(biāo)軸的其它位置是否存在點(diǎn)M,使COM的面積等于ABC的面積的一半仍然成立,若存在,請(qǐng)直接在所給的橫線上寫(xiě)出符合條件的點(diǎn)M的坐標(biāo);

3)如圖2,過(guò)點(diǎn)CCDy軸交y軸于點(diǎn)D,點(diǎn)P為線段CD延長(zhǎng)線上一動(dòng)點(diǎn),連接OP,OE平分∠AOP,OFOE,當(dāng)點(diǎn)P運(yùn)動(dòng)時(shí),的值是否會(huì)改變?若不變,求其值;若改變,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,中,的平分線交于點(diǎn),過(guò)點(diǎn)于點(diǎn),交于點(diǎn),那么下列結(jié)論,①是等腰三角形;②;③若 ; .其中正確的有(

A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,四邊形OABC是正方形,點(diǎn)A的坐標(biāo)是(4,0),P為邊AB上一點(diǎn),∠CPB=60°,沿CP折疊正方形OABC,折疊后,點(diǎn)B落在平面內(nèi)的點(diǎn)B′處,則點(diǎn)B′的坐標(biāo)為(  )

A. (2,2) B. (,2-) C. (2,4-2) D. (,4-2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知平行四邊形ABCD的對(duì)角線AC,BD相交于點(diǎn)O,AC=20 cm,BD=12 cm,兩動(dòng)點(diǎn)E,F(xiàn)同時(shí)以2 cm/s的速度分別從點(diǎn)A,C出發(fā)在線段AC上相對(duì)運(yùn)動(dòng),點(diǎn)E到點(diǎn)C,點(diǎn)F到點(diǎn)A時(shí)停止運(yùn)動(dòng).

(1)求證:當(dāng)點(diǎn)E,F(xiàn)在運(yùn)動(dòng)過(guò)程中不與點(diǎn)O重合時(shí),以點(diǎn)B,E,D,F(xiàn)為頂點(diǎn)的四邊形為平行四邊形;

(2)當(dāng)點(diǎn)E,F(xiàn)的運(yùn)動(dòng)時(shí)間t為何值時(shí),四邊形BEDF為矩形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一個(gè)木制的棱長(zhǎng)為3的正方體的表面涂上顏色,將它的棱三等分,然后從等分點(diǎn)把正方體鋸開(kāi),得到27個(gè)棱長(zhǎng)為l的小正方體,將這些小正方體充分混合后,裝入口袋,從這個(gè)口袋中任意取出一個(gè)小正方體,則這個(gè)小正方體的表面恰好涂有兩面顏色的概率是_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AD為∠BAC的平分線,添下列條件后,不能證明△ABD≌△ACD的是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,有一座拋物線形拱橋,在正常水位時(shí)水面AB的寬為20m,如果水位上升3m時(shí),水面CD的寬是10m

1)建立如圖所示的直角坐標(biāo)系,求此拋物線的解析式;

2)現(xiàn)有一輛載有救援物資的貨車(chē)從甲地出發(fā)需經(jīng)過(guò)此橋開(kāi)往乙地,已知甲地距此橋280km(橋長(zhǎng)忽略不計(jì)).貨車(chē)正以每小時(shí)40km的速度開(kāi)往乙地,當(dāng)行駛1小時(shí)時(shí),忽然接到緊急通知:前方連降暴雨,造成水位以每小時(shí)0.25m的速度持續(xù)上漲(貨車(chē)接到通知時(shí)水位在CD處,當(dāng)水位達(dá)到橋拱最高點(diǎn)O時(shí),禁止車(chē)輛通行),試問(wèn):如果貨車(chē)按原來(lái)速度行駛,能否安全通過(guò)此橋?若能,請(qǐng)說(shuō)明理由;若不能,要使貨車(chē)安全通過(guò)此橋,速度應(yīng)超過(guò)每小時(shí)多少千米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB為⊙O的直徑,C、D是⊙O上的點(diǎn),且OC∥BD,AD分別與BC、OC相交于 點(diǎn)E、F.若∠CBD=36°,則下列結(jié)論中不正確的是

A. ∠AOC=72° B. ∠AEC=72° C. AF=DF D. BD=20F

查看答案和解析>>

同步練習(xí)冊(cè)答案