【題目】小穎和小紅兩位同學在學習“概率”時,做擲骰子(質(zhì)地均勻的正方體)試驗.
(1)她們在一次試驗中共擲骰子60次,試驗的結(jié)果如下:
朝上的點數(shù) | 1 | 2 | 3 | 4 | 5 | 6 |
出現(xiàn)的次數(shù) | 7 | 9 | 6 | 8 | 20 | 10 |
①填空:此次試驗中“5點朝上”的頻率為____;
②小紅說:“根據(jù)試驗,出現(xiàn)5點的概率最大.”她的說法正確嗎?為什么?
(2)小穎和小紅在試驗中如果各擲一枚骰子,那么兩枚骰子朝上的點數(shù)之和為多少時的概率最大?試用列表法或畫樹狀圖的方法加以說明,并求出其最大概率
【答案】(1)①;②見詳解;(2).
【解析】
試題(1)①讓5出現(xiàn)的次數(shù)除以總次數(shù)即為所求的頻率;②根據(jù)概率的意義,需要大量實驗才行;
(2)列舉出所有情況,比較兩枚骰子朝上的點數(shù)之和的情況數(shù),進而讓最多的情況數(shù)除以所有情況數(shù)的即可.
試題解析:(1) ①
②小紅的說法不正確.理由:∵利用頻率估計概率的試驗次數(shù)必須比較多,重復試驗,頻率才慢慢接近概率,而她們的試驗次數(shù)太少,沒有代表性,∴小紅的說法不正確.
(2)列表:
(1,6) | (2,6) | (3,6) | (4,6) | (5,6) | (6,6) |
(1,5) | (2,5) | (3,5) | (4,5) | (5,5) | (6,5) |
(1,4) | (2,4) | (3,4) | (4,4) | (5,4) | (6,4) |
(1,3) | (2,3) | (3,3) | (4,3) | (5,3) | (6,3) |
(1,2) | (2,2) | (3,2) | (4,2) | (5,2) | (6,2) |
(1,1) | (2,1) | (3,1) | (4,1) | (5,1) | (6,1) |
共有36種等可能的結(jié)果,其中點數(shù)之和為7的結(jié)果數(shù)最多,有6種,
∴兩枚骰子朝上的點數(shù)之和為7時,概率最大,最大概率為.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,頂點為(,-)的拋物線y=ax2+bx+c過點M(2,0).
(1)求拋線的表達式;
(2)點A是拋物線與x軸的交點(不與點M重合),點B是拋物線與y軸的交點,點C是直線y=x+1上一點(處于x軸下方),點D是反比例函數(shù)y=(k>0)圖象上一點,若以點A,B,C,D為頂點的四邊形是菱形,求k的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,以Rt△ABC的斜邊BC為一邊在△ABC的同側(cè)作正方形BCEF,設(shè)正方形的中心為O,連接AO,如果AB=4,AO=6,那么AC=_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】先閱讀下列材料,然后解決后面的問題:
材料:因為二次三項式:
x2+(a+b)x+ab=(x+a)(x+b),
所以方程x2+(a+b)x+ab=0可以這樣解:
(x+a)(x+b)=0,x+a=0或x+b=0,
∴x1=-a,x2=-b.
問題:
(1)(鐵嶺中考)如果三角形的兩邊長分別是方程x2-8x+15=0的兩個根,那么連接這個三角形三邊的中點,得到的三角形的周長可能是( )
A.5.5 B.5 C.4.5 D.4
(2)(廣安中考)方程x2-3x+2=0的根是_____;
(3)(臨沂中考)對于實數(shù)a,b,定義運算“﹡”:a﹡b=,例如4﹡2,因為4>2,所以4﹡2=42-4×2=8.若x1,x2是一元二次方程x2-5x+6=0的兩個根,則x1﹡x2=_____;
(4)用因式分解法解方程x2-kx-16=0時,得到的兩根均為整數(shù),則k的值可以為_____;
(5)已知實數(shù)x滿足(x2-x)2-4(x2-x)-12=0,則代數(shù)式x2-x+1的值為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法正確的是
A.一個游戲中獎的概率是,則做100次這樣的游戲一定會中獎
B.為了了解全國中學生的心理健康狀況,應(yīng)采用普查的方式
C.一組數(shù)據(jù)0,1,2,1,1的眾數(shù)和中位數(shù)都是1
D.若甲組數(shù)據(jù)的方差,乙組數(shù)據(jù)的方差,則乙組數(shù)據(jù)比甲組數(shù)據(jù)穩(wěn)定
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知⊙O的半徑為5,PA是⊙O的一條切線,切點為A,連接PO并延長,交⊙O于點B,過點A作AC⊥PB交⊙O于點C、交PB于點D,連接BC,當∠P=30°時,
(1)求弦AC的長;
(2)求證:BC∥PA.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線y=ax2+bx+c的頂點坐標為(2,9),與y軸交于點A(0,5),與x軸交于點E、B.
(1)求二次函數(shù)y=ax2+bx+c的表達式;
(2)過點A作AC平行于x軸,交拋物線于點C,點P為拋物線上的一點(點P在AC上方),作PD平行于y軸交AB于點D,問當點P在何位置時,四邊形APCD的面積最大?并求出最大面積;
(3)若點M在拋物線上,點N在其對稱軸上,使得以A、E、N、M為頂點的四邊形是平行四邊形,且AE為其一邊,求點M、N的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,AD=4,M是AD的中點,點E是線段AB上一動點,連接EM并延長交線段CD的延長線于點F.
(1)如圖1,求證:AE=DF;
(2)如圖2,若AB=2,過點M作 MG⊥EF交線段BC于點G,求證:△GEF是等腰直角三角形
(3)如圖3,若AB=,過點M作 MG⊥EF交線段BC的延長線于點G.
①直接寫出線段AE長度的取值范圍;
②判斷△GEF的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的對角線相交于點O,正三角形OEF繞點O旋轉(zhuǎn),在旋轉(zhuǎn)過程中,當CF=DE時,∠DOF的大小是_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com