【題目】如圖,將正六邊形ABCDEF放置在直角坐標(biāo)系內(nèi),A(﹣2,0),點(diǎn)B在原點(diǎn),把正六邊形ABCDEF沿x軸正半軸作無滑動(dòng)的連續(xù)翻轉(zhuǎn),每次翻轉(zhuǎn)60°,經(jīng)過2020次翻轉(zhuǎn)之后,點(diǎn)C的坐標(biāo)是_____.
【答案】(4038,2)
【解析】
先求出開始時(shí)點(diǎn)C的橫坐標(biāo)為OC=1,根據(jù)正六邊形的特點(diǎn),每6次翻轉(zhuǎn)為一個(gè)循環(huán)組循環(huán),用2020除以6,根據(jù)商和余數(shù)的情況確定出點(diǎn)C的位置,然后求出翻轉(zhuǎn)B前進(jìn)的距離,連接CE,過點(diǎn)D作DH⊥CE于H,則CE⊥EF,∠CDH=∠EDH=60°,CH=EH,求出CE=2CH=2×CDsin60°=2,即可得出點(diǎn)C的坐標(biāo).
∵六邊形ABCDEF為正六邊形,
∴∠AOC=120°,
∴∠DOC=120°﹣90°=30°,
∴開始時(shí)點(diǎn)C的橫坐標(biāo)為:OC=×2=1,
∵正六邊形ABCDEF沿x軸正半軸作無滑動(dòng)的連續(xù)翻轉(zhuǎn),每次翻轉(zhuǎn)60°,
∴每6次翻轉(zhuǎn)為一個(gè)循環(huán)組循環(huán),
∵2020÷6=336…4,
∴為第336循環(huán)組的第4次翻轉(zhuǎn),點(diǎn)C在開始時(shí)點(diǎn)E的位置,如圖所示:
∵A(﹣2,0),
∴AB=2,
∴翻轉(zhuǎn)B前進(jìn)的距離=2×2020=4040,
∴翻轉(zhuǎn)后點(diǎn)C的橫坐標(biāo)為:4040﹣2=4038,
連接CE,過點(diǎn)D作DH⊥CE于H,則CE⊥EF,∠CDH=∠EDH=60°,CH=EH,
∴CE=2CH=2×CDsin60°=2×2×=2,
∴點(diǎn)C的坐標(biāo)為(4038,2),
故答案為:(4038,2).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知拋物線與拋物線的形狀相同,開口方向相反,且相交于點(diǎn)和點(diǎn).拋物線與軸正半軸交于點(diǎn)為拋物線上兩點(diǎn)間一動(dòng)點(diǎn),過點(diǎn)作直線軸,與交于點(diǎn).
(1)求拋物線與拋物線的解析式;
(2)四邊形的面積為,求的最大值,并寫出此時(shí)點(diǎn)的坐標(biāo);
(3)如圖2,的對稱軸為直線,與交于點(diǎn),在(2)的條件下,直線上是否存在一點(diǎn),使得以為頂點(diǎn)的三角形與相似?如果存在,求出點(diǎn)的坐標(biāo);如果不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,CE是⊙O的直徑,BD切⊙O于點(diǎn)D,DE∥BO,CE的延長線交BD于點(diǎn)A.
(1)求證:直線BC是⊙O的切線;
(2)若AE=2,tan∠DEO=,求AO的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=ax2+bx+c的頂點(diǎn)為D(﹣1,2),與x軸的一個(gè)交點(diǎn)A在點(diǎn)(﹣3,0)和(﹣2,0)之間,其部分圖象如圖,則以下結(jié)論:①b2﹣4ac<0;②a+b+c<0;③c﹣a=2;④方程ax2+bx+c﹣2=0有兩個(gè)相等的實(shí)數(shù)根.其中正確結(jié)論是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是的直徑,弦于,為上一點(diǎn),連接交于,在的延長線上取一點(diǎn),使,的延長線交的延長線于.
(1)求證:是的切線;
(2)連接,若時(shí).
①求證:;
②若,,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,圓心在坐標(biāo)原點(diǎn)的⊙O,與坐標(biāo)軸的交點(diǎn)分別為A、B和C、D.弦CM交OA于P,連結(jié)AM,已知tan∠PCO=,PC、PM是方程x2﹣px+20=0的兩根.
(1)求C點(diǎn)的坐標(biāo);
(2)寫出直線CM的函數(shù)解析式;
(3)求△AMC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在某飛機(jī)場東西方向的地面 l 上有一長為 1km 的飛機(jī)跑道 MN(如圖),在跑道 MN的正西端 14.5 千米處有一觀察站 A.某時(shí)刻測得一架勻速直線降落的飛機(jī)位于點(diǎn) A 的北偏西30°,且與點(diǎn) A 相距 15 千米的 B 處;經(jīng)過 1 分鐘,又測得該飛機(jī)位于點(diǎn) A 的北偏東 60°,且與點(diǎn) A 相距 5千米的 C 處.
(1)該飛機(jī)航行的速度是多少千米/小時(shí)?(結(jié)果保留根號(hào))
(2)如果該飛機(jī)不改變航向繼續(xù)航行,那么飛機(jī)能否降落在跑道 MN 之間?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩地相距300千米,一輛貨車和一輛轎車先后從甲地出發(fā)駛向乙地如圖,如圖,線段OA表示貨車離甲地距離y(千米)與時(shí)間x(小時(shí))之間的函數(shù)圖象;折線BCD表示轎車離甲地距離y(千米)與時(shí)間x(小時(shí))之間的函數(shù)圖象;請根據(jù)圖象解答下到問題:
(1)貨車離甲地距離y(干米)與時(shí)間x(小時(shí))之間的函數(shù)式為 ;
(2)當(dāng)轎車與貨車相遇時(shí),求此時(shí)x的值;
(3)在兩車行駛過程中,當(dāng)轎車與貨車相距20千米時(shí),求x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)和二次函數(shù)圖象的頂點(diǎn)分別為M、N ,與x軸分別相交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊)和C、D兩點(diǎn)(點(diǎn)C在點(diǎn)D的左邊),
(1))函數(shù)的頂點(diǎn)坐標(biāo)為 ;當(dāng)二次函數(shù)L1 ,L2 的值同時(shí)隨著的增大而增大時(shí),的取值范圍是 ;
(2)當(dāng)AD=MN時(shí),求的值,并判斷四邊形AMDN的形狀(直接寫出,不必證明);
(3)當(dāng)B,C是線段AD的三等分點(diǎn)時(shí),求a的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com