【題目】如圖所示,P是⊙O外一點,PA,PB分別和⊙O切于A,B兩點,C是上任意一點,過C作⊙O的切線分別交PA,PB于D,E.(1)若△PDE的周長為10,則PA的長為___ __,(2)連結(jié)CA、CB,若∠P=50°,則∠BCA的度數(shù)為___ __度.
【答案】5,115
【解析】
(1)由于PA、PB、DE都是⊙O的切線,可根據(jù)切線長定理將△PDE的周長轉(zhuǎn)化為切線PA、PB的長.
(2)根據(jù)切線長定理即可證得△PEF 周長等于2PA即可求解;根據(jù)切線的性質(zhì)以及四邊形的內(nèi)角和定理即可求得∠AOB的度數(shù),然后根據(jù)∠EOF=∠AOB即可求出∠BCA的度數(shù).
解:(1)∵PA、PB、DE分別切⊙O于A、B、C,
∴PA=PB,DA=DC,EC=EB;
∴C△PDE=PD+DE+PE=PD+DA+EB+PE=PA+PB=10;
∴PA=PB=5;
(2)連接OA、OB、AC、BC,在⊙O上取一點F,連接AF、BF,
∵PA、PB分別切⊙O 于A、B;
∴∠PAO=∠PRO=90°
∴∠AOB=360°-90°-90°-50°=130°;
∴∠AFB=∠AOB=65°,
∵∠AFB+∠BCA=180°
∴∠BCA=180°-65°=115°;
故答案是:5,115°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市預(yù)測某飲料會暢銷、先用1800元購進(jìn)一批這種飲料,面市后果然供不應(yīng)求,又用8100元購進(jìn)這種飲料,第二批飲料的數(shù)量是第一批的3倍,但單價比第一批貴2元.
(1)第一批飲料進(jìn)貨單價多少元?
(2)若兩次進(jìn)飲料都按同一價格銷售,兩批全部售完后,獲利不少于2700元,那么銷售單價至少為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在ABCD中,∠BAD的平分線交直線BC于點E,交直線DC于點F.
(1)在圖1中證明CE=CF;
(2)若∠ABC=90°,G是EF的中點(如圖2),直接寫出∠BDG的度數(shù);
(3)若∠ABC=120°,F(xiàn)G∥CE,F(xiàn)G=CE,分別連接DB、DG(如圖3),求∠BDG的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,點P為△ABC內(nèi)一點,∠APB=∠BAC=120°.若AP+BP=4,則PC的最小值為( )
A. 2B. C. D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,一次函數(shù)的圖象經(jīng)過點A(2,3)與點B(0,5)。
(1)求此一次函數(shù)的解析式。
(2)若P點為此一次函數(shù)圖象上一點,且△POB的面積為10.求點P坐標(biāo)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB=AC,點O在AB上,⊙O過點B,分別與BC、AB交于D、E,過D作DF⊥AC于F.
(1)求證:DF是⊙O的切線;
(2)若AC與⊙O相切于點G,⊙O的半徑為3,CF=1,求AC長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在等腰Rt△ABC中,∠BAC=90°,AB=AC,在△ABC外作∠ACM=∠ABC,點D為直線BC上的動點,過點D作直線CM的垂線,垂足為E,交直線AC于F.
(1)當(dāng)點D在線段BC上時,如圖1所示,①∠EDC= °;
②探究線段DF與EC的數(shù)量關(guān)系,并證明;
(2)當(dāng)點D運動到CB延長線上時,請你畫出圖形,并證明此時DF與EC的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市對一大型超市銷售的甲、乙、丙3種大米進(jìn)行質(zhì)量檢測.共抽查大米200袋,質(zhì)量評定分為A、B兩個等級(A級優(yōu)于B級),相應(yīng)數(shù)據(jù)的統(tǒng)計圖如下:
根據(jù)所給信息,解決下列問題:
(1)a= ,b= ;
(2)已知該超市現(xiàn)有乙種大米750袋,根據(jù)檢測結(jié)果,請你估計該超市乙種大米中有多少袋B級大米?
(3)對于該超市的甲種和丙種大米,你會選擇購買哪一種?運用統(tǒng)計知識簡述理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線y=ax2+bx+c與x軸交于A(1,0),B(3,0),與y軸交于C(0,3),拋物線頂點為D點.
(1)求此拋物線解析式;
(2)如圖1,點P為拋物線上的一個動點,且在對稱軸右側(cè),若△ADP面積為3,求點P的坐標(biāo);
(3)在(2)的條件下,PA交對稱軸于點E,如圖2,過E點的任一條直線與拋物線交于M,N兩點,直線MD交直線y=﹣3于點F,連結(jié)NF,求證:NF∥y軸.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com