【題目】計算:
(1)(π﹣3)0﹣()﹣2+(﹣1)2n
(2)(m2)n(mn)3÷mn﹣2
(3)x(x2﹣x﹣1)
(4)(﹣3a)2a4+(﹣2a2)3
【答案】(1)-7;(2)mn+5n3;(3)x3﹣x2﹣x;(4)a6.
【解析】
(1)根據零指數冪、負整數指數冪可以解答本題;
(2)根據冪的乘方、積的乘方和同底數冪的乘除法可以解答本題;
(3)根據單項式乘多項式可以解答本題;
(4)根據冪的乘方、積的乘方和同底數冪的乘法可以解答本題.
解:(1)(π﹣3)0﹣()﹣2+(﹣1)2n
=1-9+1
= -7;
(2)(m2)n(mn)3÷mn-2
=m2nm3n3÷mn-2
=mn+5n3;
(3)x(x2-x-1)
=x3-x2-x;
(4)(-3a)2a4+(-2a2)3
=9a2a4+(-8a6)
=9a6+(-8a6)
=a6.
故答案為:(1)-7;(2)mn+5n3;(3)x3﹣x2﹣x;(4)a6.
科目:初中數學 來源: 題型:
【題目】如圖,長方形OABC中,O為平面直角坐標系的原點,A點的坐標為,C點的坐標為,點B在第一象限內,點P從原點出發(fā),以每秒2個單位長度的速度沿著的路線移動即:沿著長方形移動一周.
寫出點B的坐標______
當點P移動了4秒時,描出此時P點的位置,并求出點P的坐標.
在移動過程中,當點P到x軸距離為5個單位長度時,求點P移動的時間.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,A(a,0)是x軸正半軸上一點,C是第四象限一點,CB⊥y軸,交y軸負半軸于B(0,b),且(a-3)2+|b+4|=0,S四邊形AOBC=16.
(1)求C點坐標;
(2)如圖2,設D為線段OB上一動點,當AD⊥AC時,∠ODA的角平分線與∠CAE的角平分線的反向延長線交于點P,求∠APD的度數.
(3)如圖3,當D點在線段OB上運動時,作DM⊥AD交BC于M點,∠BMD、∠DAO的平分線交于N點,則D點在運動過程中,∠N的大小是否變化?若不變,求出其值,若變化,說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某公司有A、B兩種型號的客車共11輛,它們的載客量(不含司機)、日租金、車輛數如下表所示,已知這11輛客車滿載時可搭載乘客350人.
A型客車 | B型客車 | |
載客量(人/輛) | 40 | 25 |
日租金(元/輛) | 320 | 200 |
車輛數(輛) | a | b |
(1)求a、b的值;
(2)某校七年級師生周日集體參加社會實踐,計劃租用A、B兩種型號的客車共6輛,且租車總費用不超過1700元.
①最多能租用A型客車多少輛?
②若七年級師生共195人,寫出所有的租車方案,并確定最省錢的租車方案.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,點 A(﹣2,0),B(2,0),C(0,2),點 D,點E分別是 AC,BC的中點,將△CDE繞點C逆時針旋轉得到△CD′E′,及旋轉角為α,連接 AD′,BE′.
(1)如圖①,若 0°<α<90°,當 AD′∥CE′時,求α的大小;
(2)如圖②,若 90°<α<180°,當點 D′落在線段 BE′上時,求 sin∠CBE′的值;
(3)若直線AD′與直線BE′相交于點P,求點P的橫坐標m的取值范圍(直接寫出結果即可).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,AD=6,AB=4,點E、G、H、F分別在AB、BC、CD、AD上,且AF=CG=2,BE=DH=1,點P是直線EF、GH之間任意一點,連接PE、PF、PG、PH,則圖中陰影面積(△PEF和△PGH的面積和)等于( 。
A. 7 B. 8 C. 12 D. 14
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在△ABC中,∠ACB=60°,CE為△ABC的角平分線,AC邊上的高BD與CE所在的直線交于點F,若∠ABD:∠ACF=2:3,則∠BEC的度數為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,點E為AD的中點,延長CE交BA的延長線于點F.
(1)求證:AB=AF;
(2)若BC=2AB,∠BCD=100°,求∠ABE的度數.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com