【題目】在“母親節(jié)”期間,某校部分團員參加社會公益活動,準備購進一批許愿瓶進行銷售,并將所得利潤捐給慈善機構.根據(jù)市場調査.這種許愿瓶一段時間內的銷售量y(個)與銷售單價x(元/個)之間的對應關系如圖所示:
(1)試求出y與x之間的函數(shù)關系;
(2)若許原瓶的進價為6元/個,按照上述市場調查的銷售規(guī)律,求銷售利潤w(元)與銷售單價x(元/個)之間的函數(shù)關系式.
【答案】(1)y=﹣30x+600;(2)w=﹣30x2+780x﹣3600
【解析】
(1)觀察圖象知y是x的一次函數(shù),設y=kx+b,根據(jù)待定系數(shù)法求出一次函數(shù)的表達式,最后檢驗圖中其他兩點是否在所求的一次函數(shù)的圖象上;
(2)根據(jù)w=(銷售單價-進價)×銷售量進行求解.
解:(1)從圖象看,y是x的一次函數(shù),設y=kx+b,
圖象過點(10,300),(12,240),則,
解得:,
∴y=﹣30x+600,
當x=14時,y=180;當x=16時,y=120,
即點(14,180),(16,120)均在函數(shù)y=﹣30x+600圖象上,
∴y與x之間的函數(shù)關系式為y=﹣30x+600;
(2)由題意得:w=(x﹣6)(﹣30x+600)=﹣30x2+780x﹣3600,
即w與x之間的函數(shù)關系式為w=﹣30x2+780x﹣3600.
科目:初中數(shù)學 來源: 題型:
【題目】隨著我國經濟社會的發(fā)展,人民對于美好生活的追求越來越高.某社區(qū)為了了解家庭對于文化教育的消費悄況,隨機抽取部分家庭,對每戶家庭的文化教育年消費金額進行問卷調査,根據(jù)調查結果繪制成兩幅不完整的統(tǒng)計圖表.
請你根據(jù)統(tǒng)計圖表提供的信息,解答下列問題:
組別 | 家庭年文化教育消費金額x(元) | 戶數(shù) |
A | x≤5000 | 36 |
B | 5000<x≤10000 | m |
C | 10000<x≤15000 | 27 |
D | 15000<x≤20000 | 15 |
E | x>20000 | 30 |
(1)本次被調査的家庭有__________戶,表中 m=__________;
(2)本次調查數(shù)據(jù)的中位數(shù)出現(xiàn)在__________組.扇形統(tǒng)計圖中,D組所在扇形的圓心角是__________度;
(3)這個社區(qū)有2500戶家庭,請你估計家庭年文化教育消費10000元以上的家庭有多少戶?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線y=﹣x2+bx+c(b,c是常數(shù))經過A(0,2)、B(4,0)兩點.
(1)求該拋物線的解析式和頂點坐標;
(2)作垂直x軸的直線x=t,在第一象限交直線AB于M,交這條拋物線于N,求當t取何值時,MN有最大值?最大值是多少?
(3)在(1)的情況下,以A、M、N、D為頂點作平行四邊形,請直接寫出第四個頂點D的所有坐標(直接寫出結果,不必寫解答過程)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】荊州市濱江公園旁的萬壽寶塔始建于明嘉靖年間,周邊風景秀麗.現(xiàn)在塔底低于地面約7米,某校學生測得古塔的整體高度約為40米.其測量塔頂相對地面高度的過程如下:先在地面A處測得塔頂?shù)难鼋菫?/span>30°,再向古塔方向行進a米后到達B處,在B處測得塔頂?shù)难鼋菫?/span>45°(如圖所示),那么a的值約為_____米(≈1.73,結果精確到0.1).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)的圖象交軸于兩點,交軸于點,點的坐標為,頂點的坐標為.
(1)求二次函數(shù)的解析式和直線的解析式;
(2)點是直線上的一個動點,過點作軸的垂線,交拋物線于點,當點在第一象限時,求線段長度的最大值;
(3)在拋物線上是否存在異于的點,使中邊上的高為,若存在求出點的坐標;若不存在請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,已知四邊形DOBC是矩形,且D(0,4),B(6,0).若反比例函數(shù)y=(x>0)的圖象經過線段OC的中點A,交DC于點E,交BC于點F.設直線EF的解析式為y=k2x+b.
(1)求反比例函數(shù)和直線EF的解析式;
(2)求△OEF的面積;
(3)請結合圖象直接寫出不等式k2x+b﹣>0的解集.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)yx3的圖象與反比例函數(shù)y(k為常數(shù),且k0)的圖象交于A(1,a),B兩點.
(1)求反比例函數(shù)的表達式及點B的坐標;
(2)在x軸上找一點P,使PA+PB的值最小,求滿足條件的點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,用細線懸掛一個小球,小球在豎直平面內的A、C兩點間來回擺動,A點與地面距離AN=14cm,小球在最低點B時,與地面距離BM=5cm,∠AOB=66°,求細線OB的長度.(參考數(shù)據(jù):sin66°≈0.91,cos66°≈0.40,tan66°≈2.25)
【答案】15cm
【解析】
試題設細線OB的長度為xcm,作AD⊥OB于D,證出四邊形ANMD是矩形,得出AN=DM=14cm,求出OD=x-9,在Rt△AOD中,由三角函數(shù)得出方程,解方程即可.
試題解析:設細線OB的長度為xcm,作AD⊥OB于D,如圖所示:
∴∠ADM=90°,
∵∠ANM=∠DMN=90°,
∴四邊形ANMD是矩形,
∴AN=DM=14cm,
∴DB=14﹣5=9cm,
∴OD=x﹣9,
在Rt△AOD中,cos∠AOD=,
∴cos66°==0.40,
解得:x=15,
∴OB=15cm.
【題型】解答題
【結束】
20
【題目】已知:如圖,在半徑為的中,、是兩條直徑,為的中點,的延長線交于點,且,連接。.
(1)求證:;
(2)求的長.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com