精英家教網 > 初中數學 > 題目詳情

【題目】對于實數a、b,定義一種運算“”為:ab=a2+ab﹣2,有下列命題: ①13=2;
②方程x1=0的根為:x1=﹣2,x2=1;
③不等式組 的解集為:﹣1<x<4;
④點( , )在函數y=x(﹣1)的圖象上.
其中正確的是(
A.①②③④
B.①③
C.①②③
D.③④

【答案】C
【解析】解:13=12+1×3﹣2=2,所以①正確; ∵x1=0,
∴x2+x﹣2=0,
∴x1=﹣2,x2=1,所以②正確;
∵(﹣2)x﹣4=4﹣2x﹣2﹣4=﹣2x﹣2,1x﹣3=1+x﹣2﹣3=x﹣4,
,解得﹣1<x<4,所以③正確;
∵y=x(﹣1)=x2﹣x﹣2,
∴當x= 時,y= ﹣2=﹣ ,所以④錯誤.
故選C.
【考點精析】掌握一元一次不等式組的解法和有理數的四則混合運算是解答本題的根本,需要知道解法:①分別求出這個不等式組中各個不等式的解集;②利用數軸表示出各個不等式的解集;③找出公共部分;④用不等式表示出這個不等式組的解集.如果這些不等式的解集的沒有公共部分,則這個不等式組無解 ( 此時也稱這個不等式組的解集為空集 );在沒有括號的不同級運算中,先算乘方再算乘除,最后算加減.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,點M、N分別是正五邊形ABCDE的邊BC、CD上的點,且BM=CN,AM交BN于點P.
(1)求證:△ABM≌△BCN;
(2)求∠APN的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在等邊△ABC,D是邊AC上一點,連接BD,將△BCD繞點B逆時針旋轉60,得到△BAE,連接ED,BC=5,BD=4,則有以下四個結論:①△BDE是等邊三角形;②AE∥BC;③△ADE的周長是9;④∠ADE=∠BDC。其中正確結論的序號是(

A. ②③④ B. ①③④ C. ①②④ D. ①②③

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在⊙O中,AB為直徑,點C為圓上一點,將劣弧 沿弦AC翻折交AB于點D,連結CD.
(1)如圖1,若點D與圓心O重合,AC=2,求⊙O的半徑r;
(2)如圖2,若點D與圓心O不重合,∠BAC=25°,請直接寫出∠DCA的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,過點A、C、D作拋物線y=ax2+bx+c(a≠0),與x軸的另一交點為E,連結CE,點A、B、D的坐標分別為(﹣2,0)、(3,0)、(0,4).

(1)求拋物線的解析式;
(2)已知拋物線的對稱軸l交x軸于點F,交線段CD于點K,點M、N分別是直線l和x軸上的動點,連結MN,當線段MN恰好被BC垂直平分時,求點N的坐標;
(3)在滿足(2)的條件下,過點M作一條直線,使之將四邊形AECD的面積分為3:4的兩部分,求出該直線的解析式.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】
(1)計算:|﹣2|+ ﹣4sin45°﹣12
(2)化簡:

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】下面四個整式中,不能表示圖中陰影部分面積的是 ( )

A. B. C. D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在ABCD中,E為CD上一點,連接AE、BD,且AE、BD交于點F,SDEF:SABF=4:25,則DE:EC=(
A.2:5
B.2:3
C.3:5
D.3:2

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,BDAC DEFAC FAMD=AGF1=2=35°

1)求∠GFC的度數

2)求證:DMBC

查看答案和解析>>

同步練習冊答案