【題目】如圖,四邊形ABCD是平行四邊形,過(guò)點(diǎn)A、C、D作拋物線y=ax2+bx+c(a≠0),與x軸的另一交點(diǎn)為E,連結(jié)CE,點(diǎn)A、B、D的坐標(biāo)分別為(﹣2,0)、(3,0)、(0,4).
(1)求拋物線的解析式;
(2)已知拋物線的對(duì)稱(chēng)軸l交x軸于點(diǎn)F,交線段CD于點(diǎn)K,點(diǎn)M、N分別是直線l和x軸上的動(dòng)點(diǎn),連結(jié)MN,當(dāng)線段MN恰好被BC垂直平分時(shí),求點(diǎn)N的坐標(biāo);
(3)在滿(mǎn)足(2)的條件下,過(guò)點(diǎn)M作一條直線,使之將四邊形AECD的面積分為3:4的兩部分,求出該直線的解析式.
【答案】
(1)
解:∵點(diǎn)A、B、D的坐標(biāo)分別為(﹣2,0)、(3,0)、(0,4),且四邊形ABCD是平行四邊形,
∴AB=CD=5,
∴點(diǎn)C的坐標(biāo)為(5,4),
∵過(guò)點(diǎn)A、C、D作拋物線y=ax2+bx+c(a≠0),
∴ ,
解得 .
故拋物線的解析式為y=﹣ x2+ x+4
(2)
解:連結(jié)BD交對(duì)稱(chēng)軸于G,
在Rt△OBD中,易求BD=5,
∴CD=BD,則∠DCB=∠DBC,
又∵∠DCB=∠CBE,
∴∠DBC=∠CBE,
過(guò)G作GN⊥BC于H,交x軸于N,
易證GH=HN,
∴點(diǎn)G與點(diǎn)M重合,
故直線BD的解析式y(tǒng)=﹣ x+4
根據(jù)拋物線可知對(duì)稱(chēng)軸方程為x= ,
則點(diǎn)M的坐標(biāo)為( , ),即GF= ,BF= ,
∴BM= = ,
又∵M(jìn)N被BC垂直平分,
∴BM=BN= ,
∴點(diǎn)N的坐標(biāo)為( ,0)
(3)
解:過(guò)點(diǎn)M作直線交x軸于點(diǎn)P1,連結(jié)CE.
易求四邊形AECD的面積為28,四邊形ABCD的面積為20,
由“四邊形AECD的面積分為3:4”可知直線P1M必與線段CD相交,
設(shè)交點(diǎn)為Q1,四邊形AP1Q1D的面積為S1,四邊形P1ECQ1的面積為S2,點(diǎn)P1的坐標(biāo)為(a,0),
假設(shè)點(diǎn)P在對(duì)稱(chēng)軸的左側(cè),則P1F= ﹣a,P1E=7﹣a,
由△MKQ1∽△MFP1,得 = ,
易求Q1K=5P1F=5( ﹣a),
∴CQ1= ﹣5( ﹣a)=5a﹣10,
∴S2= (5a﹣10+7﹣a)×4=28× ,
解得:a= ,
根據(jù)P1( ,0),M( , )可求直線P1M的解析式為y= x﹣6,
若點(diǎn)P在對(duì)稱(chēng)軸的右側(cè),則直線P2M的解析式為y=﹣ x+
【解析】(1)根據(jù)平行四邊形的性質(zhì)可求點(diǎn)C的坐標(biāo),由待定系數(shù)法即可求出拋物線的解析式;(2)連結(jié)BD交對(duì)稱(chēng)軸于G,過(guò)G作GN⊥BC于H,交x軸于N,根據(jù)待定系數(shù)法即可求出直線BD的解析式,根據(jù)拋物線對(duì)稱(chēng)軸公式可求對(duì)稱(chēng)軸,由此即可求出點(diǎn)N的坐標(biāo);(3)過(guò)點(diǎn)M作直線交x軸于點(diǎn)P1 , 分點(diǎn)P在對(duì)稱(chēng)軸的左側(cè),點(diǎn)P在對(duì)稱(chēng)軸的右側(cè),兩種情況討論即可求出直線的解析式.
【考點(diǎn)精析】本題主要考查了二次函數(shù)的圖象和二次函數(shù)的性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握二次函數(shù)圖像關(guān)鍵點(diǎn):1、開(kāi)口方向2、對(duì)稱(chēng)軸 3、頂點(diǎn) 4、與x軸交點(diǎn) 5、與y軸交點(diǎn);增減性:當(dāng)a>0時(shí),對(duì)稱(chēng)軸左邊,y隨x增大而減小;對(duì)稱(chēng)軸右邊,y隨x增大而增大;當(dāng)a<0時(shí),對(duì)稱(chēng)軸左邊,y隨x增大而增大;對(duì)稱(chēng)軸右邊,y隨x增大而減小才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD為平行四邊形,∠BAD的角平分線AE交CD于點(diǎn)F,交BC的延長(zhǎng)線于點(diǎn)E.
(1)求證:BE=CD;
(2)連接BF,若BF⊥AE,∠BEA=60°,AB=4,求平行四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】體考在即,初三(1)班的課題研究小組對(duì)本年級(jí)530名學(xué)生的體育達(dá)標(biāo)情況進(jìn)行調(diào)查,制作出如圖所示的統(tǒng)計(jì)圖,其中1班有50人.(注:30分以上為達(dá)標(biāo),滿(mǎn)分50分)根據(jù)統(tǒng)計(jì)圖,解答下面問(wèn)題:
(1)初三(1)班學(xué)生體育達(dá)標(biāo)率和本年級(jí)其余各班學(xué)生體育達(dá)標(biāo)率各是多少?
(2)若除初三(1)班外其余班級(jí)學(xué)生體育考試成績(jī)?cè)?0﹣﹣40分的有120人,請(qǐng)補(bǔ)全扇形統(tǒng)計(jì)圖;(注:請(qǐng)?jiān)趫D中分?jǐn)?shù)段所對(duì)應(yīng)的圓心角的度數(shù))
(3)如果要求全年級(jí)學(xué)生的體育達(dá)標(biāo)率不低于90%,試問(wèn)在本次調(diào)查中,該年級(jí)全體學(xué)生的體育達(dá)標(biāo)率是否符合要求?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線l分別與x軸、y軸交于A,B兩點(diǎn),與雙曲線y= (a≠0,x>0)分別交于D、E兩點(diǎn).
(1)若點(diǎn)D的坐標(biāo)為(4,1),點(diǎn)E的坐標(biāo)為(1,4):
①分別求出直線l與雙曲線的解析式;
②若將直線l向下平移m(m>0)個(gè)單位,當(dāng)m為何值時(shí),直線l與雙曲線有且只有一個(gè)交點(diǎn)?
(2)假設(shè)點(diǎn)A的坐標(biāo)為(a,0),點(diǎn)B的坐標(biāo)為(0,b),點(diǎn)D為線段AB的n等分點(diǎn),請(qǐng)直接寫(xiě)出b的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于實(shí)數(shù)a、b,定義一種運(yùn)算“”為:ab=a2+ab﹣2,有下列命題: ①13=2;
②方程x1=0的根為:x1=﹣2,x2=1;
③不等式組 的解集為:﹣1<x<4;
④點(diǎn)( , )在函數(shù)y=x(﹣1)的圖象上.
其中正確的是( )
A.①②③④
B.①③
C.①②③
D.③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖1,點(diǎn)A為線段BC外一動(dòng)點(diǎn),且BC=a,AB=b,填空:當(dāng)點(diǎn)A位于 時(shí),線段AC的長(zhǎng)取到最大值,則最大值為 ;(用含a、b的式子表示)。
(2)如圖2,若點(diǎn)A為線段BC外一動(dòng)點(diǎn),且BC=4,AB=2,分別以AB,AC為邊,作等邊和等邊,連接CD,BE.
①圖中與線段BE相等的線段是線段 ,并說(shuō)明理由;
②直接寫(xiě)出線段BE長(zhǎng)的最大值為 。
(3)如圖3,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(2,0),點(diǎn)B的坐標(biāo)為(5,0),點(diǎn)P為線段AB外一動(dòng)點(diǎn),且PA=2,PM=PB,∠BPM=90°,請(qǐng)直接寫(xiě)出線段AM長(zhǎng)的最大值為 ,及此時(shí)點(diǎn)P的坐標(biāo)為 。(提示:等腰直角三角形的三邊長(zhǎng)a、b、c滿(mǎn)足a:b:c=1:1:)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y1=x2﹣1交x軸的正半軸于點(diǎn)A,交y軸于點(diǎn)B,將此拋物線向右平移4個(gè)單位得拋物線y2 , 兩條拋物線相交于點(diǎn)C.
(1)請(qǐng)直接寫(xiě)出拋物線y2的解析式;
(2)若點(diǎn)P是x軸上一動(dòng)點(diǎn),且滿(mǎn)足∠CPA=∠OBA,求出所有滿(mǎn)足條件的P點(diǎn)坐標(biāo);
(3)在第四象限內(nèi)拋物線y2上,是否存在點(diǎn)Q,使得△QOC中OC邊上的高h(yuǎn)有最大值?若存在,請(qǐng)求出點(diǎn)Q的坐標(biāo)及h的最大值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,方格紙中每個(gè)小正方形的邊長(zhǎng)為1,四邊形ABCD的頂點(diǎn)都在格點(diǎn)上.
(1)在方格紙上建立平面直角坐標(biāo)系,使四邊形ABCD的頂點(diǎn)A,C的坐標(biāo)分別為(﹣5,﹣1),(﹣3,﹣3),并寫(xiě)出點(diǎn)D的坐標(biāo);
(2)在(1)中所建坐標(biāo)系中,畫(huà)出四邊形ABCD關(guān)于x軸的對(duì)稱(chēng)圖形A1B1C1D1,并寫(xiě)出點(diǎn)B的對(duì)應(yīng)點(diǎn)B1的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com