【題目】用如圖1所示的曲尺形框框(有三個方向),可以套住圖2日歷中的三個數(shù),設(shè)被框住的三個數(shù)中(第一個框框住的最大的數(shù)為、第二個框框住的最大的數(shù)為、第三個框框住的最大的數(shù)為)
(1)第一個框框住的三個數(shù)的和是: ,第二個框框住的三個數(shù)的和是: ,第三個框框住的三個數(shù)中的和是: ;
(2)這三個框框住的數(shù)的和分別能是81嗎?若能,則分別求出最大的數(shù)、、.
【答案】(1)3a13;3b9;3c15;(2)能,b=30,a,c的值不符題意
【解析】
(1)解本題的關(guān)鍵是找出被框住的三個數(shù)間的關(guān)系,通過觀察,不難發(fā)現(xiàn)同行相鄰兩數(shù)之間相差1,同列相鄰兩數(shù)之間相差7,從而進(jìn)行解答.
(2)按照(1)的思路,分三種情況進(jìn)行討論即可.
(1)第一個框框住的三個數(shù)的和是:a+a7+a6=3a13,
第二個框框住的三個數(shù)的和是:b+b1+b8=3b9,
c+c7+c8=3c15;
故答案為:3a13;3b9;3c15;
(2)被第一個框框住的三個數(shù)的和是81,則3a13=81,解得a=.顯然與題意不合.
被第二個框框住的三個數(shù)的和是81,則3b9=81,解得b=30.符合題意.
被第三個框框住的三個數(shù)的和是81,則3c15=81,解得c=32.不符合題意.
因此b=30.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,數(shù)軸上有A,B兩點,AB=18,原點O是線段AB上的一點,OA=2OB.
(1)求出A,B兩點所表示的數(shù);
(2)若點C是線段AO上一點,且滿足 AC=CO+CB,求C點所表示的數(shù);
(3)若點E以3個單位長度/秒的速度從點A沿數(shù)軸向點B方向勻速運動,同時點F以1個單位長度/秒的速度從點B沿數(shù)軸向右勻速運動,并設(shè)運動時間為t秒,問t為多少時,E、F兩點重合.并求出此時數(shù)軸上所表示的數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一條不完整的數(shù)軸上一動點向左移動5個單位長度到達(dá)點,再向右移動9個單位長度到達(dá)點.
(1)①若點表示的數(shù)為0,則點、點表示的數(shù)分別為: 、 ;
②若點表示的數(shù)為1,則點、點表示的數(shù)分別為: 、 ;
(2)如果點、表示的數(shù)互為相反數(shù),求點表示的數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為測量一座山峰CF的高度,將此山的某側(cè)山坡劃分為AB和BC兩段,每一段山坡近似是“直”的,測得坡長AB=800米,BC=200米,坡角∠BAF=30°,∠CBE=45°.
(1)求AB段山坡的高度EF;
(2)求山峰的高度CF.(1.414,CF結(jié)果精確到米)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC和△DEF的頂點分別為A(1,0)、B(3,0)、C(2,1)、D(4,3)、E(6,5)、F(4,7).
按下列要求畫圖:以點O為位似中心,將△ABC向y軸左側(cè)按比例尺2:1放大得△ABC的位似圖形△A1B1C1,并解決下列問題:
(1)頂點A1的坐標(biāo)為 ,B1的坐標(biāo)為 ,C1的坐標(biāo)為 ;
(2)請你利用旋轉(zhuǎn)、平移兩種變換,使△A1B1C1通過變換后得到△A2B2C2,且△A2B2C2恰與△DEF拼接成一個平行四邊形(非正方形),寫出符合要求的變換過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公交公司決定更換節(jié)能環(huán)保的新型公交車購買的數(shù)量和所需費用如下表所示:
A型數(shù)量輛 | B型數(shù)量輛 | 所需費用萬元 |
3 | 1 | 450 |
2 | 3 | 650 |
求A型和B型公交車的單價;
該公司計劃購買A型和B型兩種公交車共10輛,已知每輛A型公交車年均載客量為60萬人次,每輛B型公交車年均載客量為100萬人次,若要確保這10輛公交車年均載客量總和不少于670萬人次,則A型公交車最多可以購買多少輛?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,C為射線AB上一點,AB=30,AC比BC的多5,P,Q兩點分別從A,B兩點同時出發(fā).分別以2單位/秒和1單位/秒的速度在射線AB上沿AB方向運動,運動時間為t秒,M為BP的中點,N為QM的中點,以下結(jié)論:①BC=2AC;②AB=4NQ;③當(dāng)PB=BQ時,t=12,其中正確結(jié)論的個數(shù)是( 。
A.0B.1C.2D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校食堂廚房的桌子上整齊地擺放著若干相同規(guī)格的碟子,碟子的個數(shù)與碟子的高度的關(guān)系如下表:
(1)當(dāng)桌子上放有個碟子時,請寫出此時碟子的高度(用含的式子表示);
(2)分別從三個方向上看,其三視圖如下圖所示,廚房師傅想把它們整齊疊成一摞,求疊成一摞后的高度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com