【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線y=﹣ x2 x與x軸交于O,A,點(diǎn)B在拋物線上且橫坐標(biāo)為2.
(1)如圖1,△AOB的面積是多少?
(2)如圖1,在線段AB上方的拋物線上有一點(diǎn)K,當(dāng)△ABK的面積最大時(shí),求點(diǎn)K的坐標(biāo)及△ABK的面積;
(3)在(2)的條件下,點(diǎn)H 在y軸上運(yùn)動(dòng),點(diǎn)I在x軸上運(yùn)動(dòng).則當(dāng)四邊形BHIK周長(zhǎng)最小時(shí),求出H、I的坐標(biāo)以及四邊形BHIK周長(zhǎng)的最小值.
【答案】
(1)解:當(dāng)y=0時(shí),得A(10,0);
當(dāng)x=2時(shí),y=4,所以B(2,4),
∴ ;
(2)解:過(guò)K作KM⊥x軸交AB于M點(diǎn),
設(shè)K(m,﹣ m2 m),(2<m<10),
∵A(10,0),B(2,4),
∴直線AB的解析式為y=﹣ x+5,
則KM=﹣ m2 m﹣(﹣ m+5)=﹣ m2+3m﹣5,
∴S△ABK= KM|xA﹣xB|=4KM=﹣m2+12m﹣20=﹣(m﹣6)2+16,
∴當(dāng)m=6時(shí),S△ABK有最大值.
此時(shí),K(6,6),S△ABK=16.
(3)解:如圖,作點(diǎn)B關(guān)于y軸的對(duì)稱(chēng)點(diǎn)B′(﹣2,4)、點(diǎn)K關(guān)于x軸的對(duì)稱(chēng)點(diǎn)K′(6,﹣6),
連接B′K′,分別交x軸于點(diǎn)I,交y軸于點(diǎn)H,此時(shí)四邊形BHIK的周長(zhǎng)最小,
∴B′K′的解析式為y=﹣ x+ ,
∴H(0, )、I( ,0),
∴四邊形BHIK周長(zhǎng)的最小值為B′K′+BK= + =2 +2 .
【解析】(1)要求面積可求高,即yB;(2)(三邊均沒(méi)有水平邊或豎直邊的三角形可稱(chēng)為斜三角形)△ABK是斜三角形,須過(guò)點(diǎn)K做x軸的垂線,把它分割為兩個(gè)有豎直邊的三角形,設(shè)出自變量,構(gòu)建函數(shù),解決最值問(wèn)題;(3)四邊形BHIK周長(zhǎng)可轉(zhuǎn)化為多條線段的和,可利用對(duì)稱(chēng)法求兩線段之和最小,即做出定點(diǎn)B、K分別關(guān)于y、x軸的對(duì)稱(chēng)點(diǎn),當(dāng)三條線段B'H,HI、IK' 在一條直線上時(shí),周長(zhǎng)最短..
【考點(diǎn)精析】利用軸對(duì)稱(chēng)-最短路線問(wèn)題對(duì)題目進(jìn)行判斷即可得到答案,需要熟知已知起點(diǎn)結(jié)點(diǎn),求最短路徑;與確定起點(diǎn)相反,已知終點(diǎn)結(jié)點(diǎn),求最短路徑;已知起點(diǎn)和終點(diǎn),求兩結(jié)點(diǎn)之間的最短路徑;求圖中所有最短路徑.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某文具零售店準(zhǔn)備從批發(fā)市場(chǎng)選購(gòu)A、B兩種文具,批發(fā)價(jià)A種為12元/件,B種為8元/件.若該店零售A、B兩種文具的日銷(xiāo)售量y(件)與零售價(jià)x(元/件)均成一次函數(shù)關(guān)系.(如圖)
(1)求y與x的函數(shù)關(guān)系式;
(2)該店計(jì)劃這次選購(gòu)A、B兩種文具的數(shù)量共100件,所花資金不超過(guò)1000元,并希望全部售完獲利不低于296元,若按A種文具每件可獲利4元和B種文具每件可獲利2元計(jì)算,則該店這次有哪幾種進(jìn)貨方案?
(3)若A種文具的零售價(jià)比B種文具的零售價(jià)高2元/件,求兩種文具每天的銷(xiāo)售利潤(rùn)W(元)與A種文具零售價(jià)x(元/件)之間的函數(shù)關(guān)系式,并說(shuō)明A、B兩種文具零售價(jià)分別為多少時(shí),每天銷(xiāo)售的利潤(rùn)最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直角坐標(biāo)平面內(nèi)兩點(diǎn)A(-2,-3)、B(3,-3),將點(diǎn)B向上平移5個(gè)單位到達(dá)點(diǎn)C,求:
(1)A、B兩點(diǎn)間的距離;
(2)寫(xiě)出點(diǎn)C的坐標(biāo);
(3)四邊形OABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖放置的△OAB1 , △B1A1B2 , △B2A2B3 , …都是邊長(zhǎng)為2的等邊三角形,點(diǎn)A在y軸上,點(diǎn)O,B1 , B2 , B3…都在直線l上,則點(diǎn)B2017的坐標(biāo)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將△ABC的∠C折起,翻折后角的頂點(diǎn)位置記作C′,當(dāng)C′落在AC上時(shí)(如圖1),易證:∠1=2∠2.
當(dāng)C′點(diǎn)落在CA和CB之間(如圖2)時(shí),或當(dāng)C′落在CB、CA的同旁(如圖3)時(shí),∠1、∠2、∠3關(guān)系又如何?請(qǐng)寫(xiě)出你的猜想,并就其中一種情況給出證明.
圖1 圖2 圖3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AD與AB,CD交于A,D兩點(diǎn),EC,BF與AB,CD交于E,C,B,F(xiàn),且∠1=∠2,∠B=∠C,
(1)說(shuō)明CE∥BF.
(2)你能得出∠B=∠3和∠A=∠D這兩個(gè)結(jié)論嗎?若能,寫(xiě)出你得出結(jié)論的過(guò)程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】填寫(xiě)理由:
已知:如圖,ABC是直線,∠1=115°,∠D=65°.
求證:AB∥DE.
證明:∵ABC是一直線,(已知)
∴∠1+∠2=180°( )
∵∠1=115°(已知)
∴∠2=65°
又∵∠D=65°(已知)
∴∠2=∠D
∴ ∥ ( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=x2+bx+c與x軸相交于A、B兩點(diǎn),點(diǎn)B的坐標(biāo)為(3,0),與y軸相交于點(diǎn)C(0,﹣3),頂點(diǎn)為D.
(1)求出拋物線y=x2+bx+c的表達(dá)式;
(2)連結(jié)BC,與拋物線的對(duì)稱(chēng)軸交于點(diǎn)E,點(diǎn)P為線段BC上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作PF∥DE交拋物線于點(diǎn)F,設(shè)點(diǎn)P的橫坐標(biāo)為m.
①當(dāng)m為何值時(shí),四邊形PEDF為平行四邊形.
②設(shè)四邊形OBFC的面積為S,求S的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A,B的坐標(biāo)分別為A(0,a),B(b,a),且a,b滿(mǎn)足(a﹣3)2+|b﹣6|=0,現(xiàn)同時(shí)將點(diǎn)A,B分別向下平移3個(gè)單位,再向左平移2個(gè)單位,分別得到點(diǎn)A,B的對(duì)應(yīng)點(diǎn)C,D,連接AC,BD,AB.
(1)求點(diǎn)C,D的坐標(biāo)及四邊形ABDC的面積S四邊形ABCD;
(2)在y軸上是否存在一點(diǎn)M,連接MC,MD,使S△MCD=S四邊形ABCD?若存在這樣一點(diǎn),求出點(diǎn)M的坐標(biāo),若不存在,試說(shuō)明理由;
(3)點(diǎn)P是直線BD上的一個(gè)動(dòng)點(diǎn),連接PA,PO,當(dāng)點(diǎn)P在BD上移動(dòng)時(shí)(不與B,D重合),直接寫(xiě)出∠BAP,∠DOP,∠APO之間滿(mǎn)足的數(shù)量關(guān)系.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com