【題目】如圖,已知AD與AB,CD交于A,D兩點(diǎn),EC,BF與AB,CD交于E,C,B,F(xiàn),且∠1=∠2,∠B=∠C,
(1)說明CE∥BF.
(2)你能得出∠B=∠3和∠A=∠D這兩個(gè)結(jié)論嗎?若能,寫出你得出結(jié)論的過程.
【答案】(1)說明見解析;(2)能,理由如下.
【解析】
試題分析:(1)根據(jù)對頂角相等得到∠1=∠CHG,又∠1=∠2,則∠CHG=∠2,根據(jù)“同位角相等,兩直線平行”即可得到結(jié)論;
(2)由CE∥BF,根據(jù)“兩直線平行,同位角相等”得∠C=∠3,而∠B=∠C,則∠B=∠3,根據(jù)平行線的判定得AB∥CD,然后根據(jù)平行線的性質(zhì)即可得到∠A=∠D.
試題解析:(1)∵∠1=∠CHG,
又∠1=∠2,
∴∠CHG=∠2,
∴CE∥BF;
(2)能.理由如下:
∵CE∥BF,
∴∠C=∠3,
而∠B=∠C,
∴∠B=∠3,
∴AB∥CD,
∴∠A=∠D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AD=AB,∠BAD的平分線交BC于點(diǎn)E,DH⊥AE于點(diǎn)H,連接BH并延長交CD于點(diǎn)F,連接DE交BF于點(diǎn)O,下列結(jié)論:①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,其中正確的有( )
A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩家草莓采摘園的草莓品質(zhì)相同,銷售價(jià)格也相同.“五一期間”,兩家均推出了優(yōu)惠方案,甲采摘園的優(yōu)惠方案是:游客進(jìn)園需購買50元的門票,采摘的草莓六折優(yōu)惠;乙采摘園的優(yōu)惠方案是:游客進(jìn)園不需購買門票,采摘園的草莓超過一定數(shù)量后,超過部分打折優(yōu)惠.優(yōu)惠期間,設(shè)某游客的草莓采摘量為x(千克),在甲采摘園所需總費(fèi)用為(元),在乙采摘園所需總費(fèi)用為(元),圖中折線OAB表示與x之間的函數(shù)關(guān)系.
(1)甲、乙兩采摘園優(yōu)惠前的草莓銷售價(jià)格是每千克 元;
(2)求、與x的函數(shù)表達(dá)式;
(3)在圖中畫出與x的函數(shù)圖象,并寫出選擇甲采摘園所需總費(fèi)用較少時(shí),草莓采摘量x的范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ACB中,C為直角頂點(diǎn),∠ABC=25°,O為斜邊AB的中點(diǎn),將OA繞著點(diǎn)O逆時(shí)針旋轉(zhuǎn)α(0°<α<180°)到OP.當(dāng)△BCP為等腰三角形時(shí),α的度數(shù)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線y=﹣ x2 x與x軸交于O,A,點(diǎn)B在拋物線上且橫坐標(biāo)為2.
(1)如圖1,△AOB的面積是多少?
(2)如圖1,在線段AB上方的拋物線上有一點(diǎn)K,當(dāng)△ABK的面積最大時(shí),求點(diǎn)K的坐標(biāo)及△ABK的面積;
(3)在(2)的條件下,點(diǎn)H 在y軸上運(yùn)動(dòng),點(diǎn)I在x軸上運(yùn)動(dòng).則當(dāng)四邊形BHIK周長最小時(shí),求出H、I的坐標(biāo)以及四邊形BHIK周長的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是反映兩個(gè)變量關(guān)系的圖,下列的四個(gè)情境比較合適該圖的是( )
A.一杯熱水放在桌子上,它的水溫與時(shí)間的關(guān)系
B.一輛汽車從起動(dòng)到勻速行駛,速度與時(shí)間的關(guān)系
C.一架飛機(jī)從起飛到降落的速度與時(shí)晨的關(guān)系
D.踢出的足球的速度與時(shí)間的關(guān)系
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為順利通過“國家生態(tài)文明示范區(qū)”驗(yàn)收,璧山政府?dāng)M對城區(qū)部分路段的人行道地磚、綠化帶、排水管道等公用設(shè)施全面更新改造.現(xiàn)有甲、乙兩個(gè)工程隊(duì)有意承包這項(xiàng)工程,經(jīng)調(diào)查知道,乙工程隊(duì)單獨(dú)完成此項(xiàng)工程的時(shí)間是甲工程隊(duì)單獨(dú)完成此項(xiàng)工程時(shí)間的2倍,若甲、乙兩工程隊(duì)合作只需10天完成.
(1)甲、乙兩個(gè)工程隊(duì)單獨(dú)完成此項(xiàng)工程各需多少天?
(2)市政府決定由甲、乙共同完成此項(xiàng)工程.若甲工程隊(duì)每天的工程費(fèi)用是4.5萬元,乙工程隊(duì)每天的工程費(fèi)用是2.5萬元,若工程費(fèi)用不超過72萬元,則甲工程隊(duì)最少工作多少天?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】最近,“校園安全”受到全社會的廣泛關(guān)注,重慶八中對部分學(xué)生就校園安全知識的了解程度,采用隨機(jī)抽樣調(diào)查的方式,并根據(jù)收集到的信息進(jìn)行統(tǒng)計(jì),繪制了如下兩幅尚不完整的統(tǒng)計(jì)圖,請你根據(jù)統(tǒng)計(jì)圖中所提供的信息解答下列問題:
(1)扇形統(tǒng)計(jì)圖中“基本了解”部分所對應(yīng)扇形的圓心角為度;請補(bǔ)全條形統(tǒng)計(jì)圖;
(2)若達(dá)到“了解”程度的人中有1名男生2名女生,達(dá)到“不了解”的程度的人中有1名男生和1名女生,若分別從達(dá)到“了解”程度和“不了解”的人中分別抽取1人參加校園安全知識競賽,請用樹狀圖或列表法求出恰好抽到1名男生和1名女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某校園內(nèi)有一塊菱形的空地ABCD,為了美化環(huán)境,現(xiàn)要進(jìn)行綠化,計(jì)劃在中間建設(shè)一個(gè)面積為S的矩形綠地EFGH,其中,點(diǎn)E、F、G、H分別在菱形的四條邊上,AB=a米,BE=BF=DG=DH=x米,∠A=60°
(1)求S關(guān)于x的函數(shù)關(guān)系式,并直接寫出自變量x的取值范圍;
(2)若a=100,求S的最大值,并求出此時(shí)x的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com