【題目】若函數(shù)y=m1x|m|是正比例函數(shù),則該函數(shù)的圖象經(jīng)過第 象限.

【答案】二、四

【解析】

試題分析:形如y=kxk是常數(shù),k0的函數(shù)叫做正比例函數(shù);正比例函數(shù)y=kxk是常數(shù),k0,當(dāng)k>0時(shí),直線y=kx依次經(jīng)過第三、一象限,從左向右上升,y隨x的增大而增大;當(dāng)k<0時(shí),直線y=kx依次經(jīng)過第二、四象限,從左向右下降,y隨x的增大而減。鶕(jù)正比例函數(shù)定義可得:|m|=1,且m10,計(jì)算出m的值,然后可得解析式,再根據(jù)正比例函數(shù)的性質(zhì)可得答案. 由題意得:|m|=1,且m10, 解得:m=1, 函數(shù)解析式為y=2x,

k=2<0, 該函數(shù)的圖象經(jīng)過第二、四象限

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某牛奶加工廠現(xiàn)有鮮奶9噸,若在市場上直接銷售鮮奶,每噸可獲取利潤500元;制成酸奶銷售,每噸可獲取利潤1200元;制成奶片銷售,每噸可獲取利潤 2000元。

該加工廠的生產(chǎn)能力是:如制成酸奶,每天可加工3噸;制成奶片,每天可加工1噸。受人員限制,兩種加工方式不可同時(shí)進(jìn)行。受氣溫條件限制,這批牛奶必須在4天內(nèi)全部銷售或加工完畢。為此,該廠設(shè)計(jì)了兩種可行方案:

方案一:盡可能多地制成奶片,其余直接銷售鮮奶;

方案二:將一部分制成奶片,其余制成酸奶銷售,并恰好4天完成。

你認(rèn)為哪種方案獲利最多?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,D、E分別是AB、AC的中點(diǎn),過點(diǎn)E作EF∥AB,交BC于點(diǎn)F.

(1)求證:四邊形DBFE是平行四邊形;

(2)當(dāng)△ABC滿足什么條件時(shí),四邊形DBFE是菱形?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,若將左圖正方形剪成四塊,恰能拼成右圖的矩形,設(shè)a=1,則b=( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,邊長為a的等邊△ACB中,E是對稱軸AD上一個(gè)動點(diǎn),連EC,將線段EC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)60°得到MC,連DM,則在點(diǎn)E運(yùn)動過程中,DM的最小值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分10分)如圖,在平行四邊形ABCD中,點(diǎn)A、B、C的坐標(biāo)分別是(10)、(31)、(3,3),雙曲線y=k≠0x0)過點(diǎn)D

1)求此雙曲線的解析式;

2)作直線ACy軸于點(diǎn)E,連結(jié)DE,求 CDE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,∠A∶∠B∶∠C123,則∠B=___________,若三角形的最長邊為10cm,則最短邊長為_________cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠ABD和∠BDC的平分線交于E,BECD于點(diǎn)F,∠1+∠2=90°.

(1)試說明:ABCD;

(2)若∠2=25°,求∠BFC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在等腰三角形、平行四邊形、矩形、正方形、正五邊形中,既是軸對稱圖形又是中心對稱圖形的圖形有 個(gè).

查看答案和解析>>

同步練習(xí)冊答案