【題目】某單位800名職工積極參加向貧困地區(qū)學校捐書活動,為了解職工的捐書數(shù)量,采用隨機抽樣的方法抽取30名職工的捐書數(shù)量作為樣本,對他們的捐書數(shù)量進行統(tǒng)計,統(tǒng)計結果共有4本、5本、6本、7本、8本五類,分別用A、B、C、D、E表示,根據(jù)統(tǒng)計數(shù)據(jù)繪制成了如圖所示的不完整的條形統(tǒng)計圖,
由圖中給出的信息解答下列問題:
(1)補全條形統(tǒng)計圖;
(2)求這30名職工捐書本數(shù)的平均數(shù),寫出眾數(shù)和中位數(shù);
(3)估計該單位800名職工共捐書多少本?
【答案】(1)補全圖形見解析;(2)平均數(shù)是6本,眾數(shù)是6本,中位數(shù)是6本.(3)該單位800名職工共捐書有4800本.
【解析】
(1)根據(jù)總數(shù)和統(tǒng)計數(shù)據(jù)求解即可;
(2)根據(jù)平均數(shù),眾數(shù)和中位數(shù)定義公式求解即可;
(3)根據(jù)已知平均數(shù)乘以員工總數(shù)求解即可.
解:(1)D組人數(shù)=30﹣4﹣6﹣9﹣3=8人,補圖如下:
.
(2)平均數(shù)是: =6(本),
眾數(shù)是6本,中位數(shù)是6本.
(3)∵平均數(shù)是6本,
∴該單位800名職工共捐書有6×800=4800本.
科目:初中數(shù)學 來源: 題型:
【題目】重慶八中建校80周年,在體育、藝術、科技等方面各具特色,其中排球選修課是體育特色項目之一.體育組老師為了了解初一年級學生的訓練情況,隨機抽取了初一年級部分學生進行1分鐘墊球測試,并將這些學生的測試成績(即1分鐘的墊球個數(shù),且這些測試成績都在60~180范圍內(nèi))分段后給出相應等級,具體為:測試成績在60~90范圍內(nèi)的記為D級(不包括90),90~120范圍內(nèi)的記為C級(不包括120),120~150范圍內(nèi)的記為B級(不包括150),150~180范圍內(nèi)的記為A級.現(xiàn)將數(shù)據(jù)整理繪制成如下兩幅不完整的統(tǒng)計圖,其中在扇形統(tǒng)計圖中A級對應的圓心角為90°,請根據(jù)圖中的信息解答下列問題:
(1)在這次測試中,一共抽取了 名學生,并補全頻數(shù)分布直方圖:在扇形統(tǒng)計圖中,D級對應的圓心角的度數(shù)為 度.
(2)王攀同學在這次測試中1分鐘墊球140個.他為了了解自己墊球個數(shù)在年級排名的大致情況,他把成績?yōu)?/span>B等的全部同學1分鐘墊球人數(shù)做了統(tǒng)計,其統(tǒng)計結果如表:
成績(個) | 120 | 125 | 130 | 135 | 140 | 145 |
人數(shù)(頻數(shù)) | 2 | 8 | 3 | 10 | 9 | 8 |
(墊球個數(shù)計數(shù)原則:120<墊球個數(shù)≤125記為125,125<墊球個數(shù)≤130記為130,依此類推)請你估計王攀同學的1分鐘墊球個數(shù)在年級排名的大致情況.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知正方形ABCD的邊長為5,點E、F分別在BC和CD邊上,分別連接AE、AF、EF,若∠EAF=45°,則△CEF的周長是( 。
A.6+2B.8.5C.10D.12
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一汽車租賃公司擁有某種型號的汽車100輛.公司在經(jīng)營中發(fā)現(xiàn)每輛車的月租金x(元)與每月租出的車輛數(shù)(y)有如下關系:
x | 3000 | 3200 | 3500 | 4000 |
y | 100 | 96 | 90 | 80 |
(1)觀察表格,用所學過的一次函數(shù)、反比例函數(shù)或二次函數(shù)的有關知識求出每月租出的車輛數(shù)y(輛)與每輛車的月租金x(元)之間的關系式.
(2)已知租出的車每輛每月需要維護費150元,未租出的車每輛每月需要維護費50元.用含x(x≥3000)的代數(shù)式填表:
租出的車輛數(shù) | 未租出的車輛數(shù) | ||
租出每輛車的月收益 | 所有未租出的車輛每月的維護費 |
(3)若你是該公司的經(jīng)理,你會將每輛車的月租金定為多少元,才能使公司獲得最大月收益?請求出公司的最大月收益是多少元.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在△ABC中,∠BAC=90°,AB=AC,D為邊AB上一點,連接CD,在線段CD上取一點E,以AE為直角邊作等腰直角△AEF,使∠EAF=90°,連接BF交CD的延長線于點P.
(1)探索:CE與BF有何數(shù)量關系和位置關系?并說明理由;
(2)如圖2,若AB=2,AE=1,把△AEF繞點A順時針旋轉(zhuǎn)至△AE'F′,當∠E′AC=60°時,求BF′的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c(a≠0)圖象的一部分,對稱軸是直線x=﹣2.關于下列結論:①ab<0;②b2﹣4ac>0;③9a﹣3b+c>0;④b﹣4a=0;⑤方程ax2+bx=0的兩個根為x1=0,x2=﹣4,其中正確的結論有( 。
A.2個B.3個C.4個D.5個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在每個小正方形的邊長均為1的方格紙中,線段AB的端點均在小正方形的頂點上.
(1)在圖中畫出以AB為底的等腰三角形ABC,點C在小正方形的頂點上,且△ABC的面積是7.5;
(2)在(1)的條件下,在圖中畫出以AC為斜邊的直角三角形ACE(AE<EC),點E在小正方形的頂點上,且△ACE的面積是5,連接EB,并直接寫出tan∠AEB的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com