【題目】一汽車租賃公司擁有某種型號的汽車100輛.公司在經(jīng)營中發(fā)現(xiàn)每輛車的月租金x()與每月租出的車輛數(shù)(y)有如下關(guān)系:

x

3000

3200

3500

4000

y

100

96

90

80

1)觀察表格,用所學(xué)過的一次函數(shù)、反比例函數(shù)或二次函數(shù)的有關(guān)知識求出每月租出的車輛數(shù)y(輛)與每輛車的月租金x(元)之間的關(guān)系式.

2)已知租出的車每輛每月需要維護費150元,未租出的車每輛每月需要維護費50元.用含xx≥3000)的代數(shù)式填表:

租出的車輛數(shù)

未租出的車輛數(shù)

租出每輛車的月收益

所有未租出的車輛每月的維護費

3)若你是該公司的經(jīng)理,你會將每輛車的月租金定為多少元,才能使公司獲得最大月收益?請求出公司的最大月收益是多少元.

【答案】1yx間的函數(shù)關(guān)系是.(2)填表見解析;(3)當(dāng)每輛車的月租金為4050元時,公司獲得最大月收益307050

【解析】

1)判斷出yx的函數(shù)關(guān)系為一次函數(shù)關(guān)系,再根據(jù)待定系數(shù)法求出函數(shù)解析式.

2)根據(jù)題意可用代數(shù)式求出出租車的輛數(shù)和未出租車的輛數(shù)即可.

3)租出的車的利潤減去未租出車的維護費,即為公司最大月收益.

解:(1)由表格數(shù)據(jù)可知yx是一次函數(shù)關(guān)系,設(shè)其解析式為,

將(3000100),(320096)代入得,解得:

將(3500,90),(4000,80)代入檢驗,適合.

yx間的函數(shù)關(guān)系是

2)填表如下:

租出的車輛數(shù)

未租出的車輛數(shù)

租出每輛車的月收益

所有未租出的車輛每月的維護費

3)設(shè)租賃公司獲得的月收益為W元,依題意可得:

當(dāng)x=4050時,Wmax=307050,

∴當(dāng)每輛車的月租金為4050元時,公司獲得最大月收益307050

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,C為⊙O 上一點,過點C作⊙O的切線DEADDE于點D,DEAB的延長線交于點E,連接AC.

1)求證:AC平分∠DAE;

2)若⊙O的半徑為2,∠CAB=35°,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=3,BC=6,若點E,F分別在AB,CD上,且BE=2AE,DF=2FCG,H分別是AC的三等分點,則四邊形EHFG的面積為(

A. 1B. C. 2D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將ABCD的邊DC延長到點E,使CEDC,連接AE,交BC于點F

1)求證:△ABF≌△ECF;

2)若∠AFC2D,連接ACBE,求證:四邊形ABEC是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A是反比例函數(shù)yx0)圖象上一點,以OA為斜邊作等腰直角△ABO,將△ABO繞點O以逆時針旋轉(zhuǎn)135°,得到△A1B1O,若反比例函數(shù)y的圖象經(jīng)過點B1,則k的值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AC與⊙O相切于點A,點B為⊙O上一點,且OCOB于點O,連接ABOC于點D

1)求證:ACCD

2)若AC3,OB4,求OD的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某單位800名職工積極參加向貧困地區(qū)學(xué)校捐書活動,為了解職工的捐書數(shù)量,采用隨機抽樣的方法抽取30名職工的捐書數(shù)量作為樣本,對他們的捐書數(shù)量進行統(tǒng)計,統(tǒng)計結(jié)果共有4本、5本、6本、7本、8本五類,分別用A、B、CD、E表示,根據(jù)統(tǒng)計數(shù)據(jù)繪制成了如圖所示的不完整的條形統(tǒng)計圖,

由圖中給出的信息解答下列問題:

1)補全條形統(tǒng)計圖;

2)求這30名職工捐書本數(shù)的平均數(shù),寫出眾數(shù)和中位數(shù);

3)估計該單位800名職工共捐書多少本?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,把一條拋物線先向上平移1個單位長度,然后繞原點旋轉(zhuǎn)180°得到拋物線yx2+5x+6.則原拋物線的頂點坐標(biāo)是(  )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A13)為雙曲線上的一點,連接AO并延長與雙曲線在第三象限交于點B,M軸正半軸一上點,連接MA并延長與雙曲線交于點N,連接BM、BN,已知MBN的面積為,則點N的坐標(biāo)為__________.

查看答案和解析>>

同步練習(xí)冊答案