【題目】如圖,△ABC是邊長為3的等邊三角形,△BDC是等腰三角形,且∠BDC=120°.以點D為頂點作一個60°角,使其兩邊分別交AB于點M,交AC于點N,連接MN.
(1)求證:MN=BM+NC;
(2)求△AMN的周長.
【答案】(1)證明見解析;(2)6.
【解析】
(1)先證明△BDF≌△CDN,得出∠BDF=∠CDN,DF=DN,同時再證明△DMN≌△DMF,得出MN=MF=MB+BF=MB+CN.
(2)根據(jù)MN=MB+CN,得出△AMN的周長為AM+AN+MN=AM+MB+AN+CN=AB+AC=6.
解:(1)∵△BDC是等腰三角形,且∠BDC=120°,∴∠BCD=∠DBC=30°.
∵△ABC是等邊三角形,∴∠ABC=∠BCA=60°,
∴∠DBA=∠DCA=90°,
延長AB至F,使BF=CN,連接DF,
由SAS可證△BDF≌△CDN,
∴∠BDF=∠CDN,DF=DN,
∵∠MDN=60°,∴∠FDM=∠BDM+∠CDN=60°,
由SAS可證△DMN≌△DMF,
∴MN=MF=MB+BF=MB+CN
(2)由(1)知MN=MB+CN,
∴△AMN的周長為AM+AN+MN=AM+MB+AN+CN=AB+AC=6
科目:初中數(shù)學 來源: 題型:
【題目】(1)在圖中作出△ABC關于直線m對稱的△A′B′C′,并寫出A′、B′、C′三點的坐標(2)猜想:坐標平面內任意點P(x,y)關于直線m對稱點P′的坐標為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,若點M是y軸正半軸上任意一點,過點M作PQ∥x軸,分別交函數(shù)y=(x<0)和y=(x>0)的圖象于點P和Q,連接OP和OQ.以下列結論:
①∠POQ不可能等于90°;
②;
③這兩個函數(shù)的圖象一定關于y軸對稱;
④若S△POM=S△QOM,則k1+k2=0;
⑤△POQ的面積是(|k1|+|k2|).
其中正確的有_____(填寫序號).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)某校招聘教師一名,現(xiàn)有甲、乙、丙三人通過專業(yè)知識、講課、答辯三項測試,他們各自的成績如下表所示:
應聘者 | 專業(yè)知識 | 講課 | 答辯 |
甲 | 70 | 85 | 80 |
乙 | 90 | 85 | 75 |
丙 | 80 | 90 | 85 |
按照招聘簡章要求,對專業(yè)知識、講課、答辯三項賦權5:4:1.請計算三名應聘者的平均成績,從成績看,應該錄取誰?
(2)我市舉行了某學科實驗操作考試,有A、B、C、D四個實驗,規(guī)定每位學生只參加其中一個實驗的考試,并由學生自己抽簽決定具體的考試實驗.小王,小張,小厲都參加了本次考試.
①小厲參加實驗D考試的概率是 ;
②用列表或畫樹狀圖的方法求小王、小張抽到同一個實驗的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=6,BC=8,點M,N同時從點B出發(fā),分別在BC,BA上運動,若點M的運動速度是每秒2個單位長度,且是點N運動速度的2倍,當其中一個點到達終點時,停止一切運動.以MN為對稱軸作△MNB的對稱圖形△MNB1.點B1恰好在AD上的時間為______秒.在整個運動過程中,△MNB1與矩形ABCD重疊部分面積的最大值為______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC是等邊三角形,D為邊AC的中點,AE⊥EC,BD=EC.
(1)求證:△BDA≌△CEA;
(2)請判斷△ADE是什么三角形,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,AB=AC,點D是直線BC上一點(不與B、C重合),以AD為一邊在AD的右側作△ADE,使AD=AE,∠DAE =∠BAC,連接CE.
(1)如圖1,當點D在線段BC上,如果∠BAC=90°,則∠BCE=________度;
(2)設,.
①如圖2,當點在線段BC上移動,則,之間有怎樣的數(shù)量關系?請說明理由;
②當點在直線BC上移動,則,之間有怎樣的數(shù)量關系?請直接寫出你的結論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖.在直角坐標系中,矩形ABCO的邊OA在x軸上,邊OC在y軸上,點B的坐標為(1,3),將矩形沿對角線AC翻折,B點落在D點的位置,且AD交y軸于點E.那么點D的坐標為( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一次函數(shù)y = kx + b的圖象經(jīng)過點(1,-2)和(2,0).
(1)求這個一次函數(shù)的關系式:
(2)將該函數(shù)的圖象沿x軸向左平移3個單位后,求所得圖象對應的函數(shù)表達式。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com