【題目】通過類比聯想、引申拓展研究典型題目,可達到解一題知一類的目的.下面是一個案例,請補充完整.
原題:如圖1,點E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,連接EF,則EF=BE+DF,試說明理由.
(1)思路梳理
∵AB=CD,
∴把△ABE繞點A逆時針旋轉90°至△ADG,可使AB與AD重合.
∵∠ADC=∠B=90°,
∴∠FDG=180°,點F、D、G共線.
根據___________,SAS
易證△AFG≌___________△AEF
,得EF=BE+DF.
(2)類比引申
如圖2,四邊形ABCD中,AB=AD,∠BAD=90°.點E、F分別在邊BC、CD上,∠EAF=45°.若∠B、∠D都不是直角,則當∠B與∠D滿足等量關系______________∠B+∠D=180°
時,仍有EF=BE+DF.
(3)聯想拓展
如圖3,在△ABC中,∠BAC=90°,AB=AC,點D、E均在邊BC上,且∠DAE=45°.猜想BD、DE、EC應滿足的等量關系,并寫出推理過程.
【答案】答案見解析.
【解析】
試題分析:(1)把△ABE繞點A逆時針旋轉90°至△ADG,可使AB與AD重合,再證明△AFG≌△AFE進而得到EF=FG,即可得EF=BE+DF;
(2)∠B+∠D=180°時,EF=BE+DF,與(1)的證法類同;
(3)根據△AEC繞點A順時針旋轉90°得到△ABE′,根據旋轉的性質,可知△AEC≌△ABE′得到BE′=EC,AE′=AE,∠C=∠ABE′,∠EAC=∠E′AB,根據Rt△ABC中的,AB=AC得到∠E′BD=90°,所以E′B2+BD2=E′D2,證△AE′D≌△AED,利用DE=DE′得到DE2=BD2+EC2;
試題解析:(1)∵AB=AD,
∴把△ABE繞點A逆時針旋轉90°至△ADG,可使AB與AD重合.
∴∠BAE=∠DAG,
∵∠BAD=90°,∠EAF=45°,
∴∠BAE+∠DAF=45°,
∴∠EAF=∠FAG,
∵∠ADC=∠B=90°,
∴∠FDG=180°,點F、D、G共線,
在△AFE和△AFG中
,
∴△AFE≌△AFG(SAS),
∴EF=FG,
即:EF=BE+DF.
(2)∠B+∠D=180°時,EF=BE+DF;
∵AB=AD,
∴把△ABE繞點A逆時針旋轉90°至△ADG,可使AB與AD重合,
∴∠BAE=∠DAG,
∵∠BAD=90°,∠EAF=45°,
∴∠BAE+∠DAF=45°,
∴∠EAF=∠FAG,
∵∠ADC+∠B=180°,
∴∠FDG=180°,點F、D、G共線,
在△AFE和△AFG中
,
∴△AFE≌△AFG(SAS),
∴EF=FG,
即:EF=BE+DF.
(3)猜想:DE2=BD2+EC2,
證明:連接DE′,根據△AEC繞點A順時針旋轉90°得到△ABE′,
∴△AEC≌△ABE′,
∴BE′=EC,AE′=AE,
∠C=∠ABE′,∠EAC=∠E′AB,
在Rt△ABC中,
∵AB=AC,
∴∠ABC=∠ACB=45°,
∴∠ABC+∠ABE′=90°,
即∠E′BD=90°,
∴E′B2+BD2=E′D2,
又∵∠DAE=45°,
∴∠BAD+∠EAC=45°,
∴∠E′AB+∠BAD=45°,
即∠E′AD=45°,
在△AE′D和△AED中,
∴△AE′D≌△AED(SAS),
∴DE=DE′,
∴DE2=BD2+EC2.
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD中,∠A=∠C=90°,BE平分∠ABC交CD于E,DF平分∠ADC交AB于F.
(1)若∠ABC=50°,則∠ADC= °,∠AFD= °;
(2)BE與DF平行嗎?試說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列關系式中,正確的是()
A. (a+b)2=a2-2ab+b2
B. (a-b)2=a2-b2
C. (a+b)(-a+b)=b2-a2
D. (a+b)(-a-b)=a2-b2
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校九年級學習小組在探究學習過程中,用兩塊完全相同的且含60°角的直角三角板ABC與AFE按如圖(1)所示位置放置放置,現將Rt△AEF繞A點按逆時針方向旋轉角α(0°<α<90°),如圖(2),AE與BC交于點M,AC與EF交于點N,BC與EF交于點P.
(1)求證:AM=AN;
(2)當旋轉角α=30°時,四邊形ABPF是什么樣的特殊四邊形?并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】對于平面圖形上的任意兩點P,Q,如果經過某種變換(如:平移、旋轉、軸對稱等)得到新圖形上的對應點P′,Q′,保持P P′= Q Q′,我們把這種對應點連線相等的變換稱為“同步變換”。對于三種變換: ①平移、②旋轉、③軸對稱,
其中一定是“同步變換”的有______________(填序號)。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某市今年第一季度快遞業(yè)務總量達到4210000件.4210000這個數用科學計數法表示為( )
A. 0.421×107 B. 4.21×106 C. 4.21×107 D. 4.21×104
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com