如圖是二次函數(shù)y=ax2+bx+c(a≠0)圖象的一部分,對稱軸為x=,且經(jīng)過點(2,0),有下列說法:①abc<0;②a+b=0;③4a+2b+c<0;④若(0,y1),(1,y2)是拋物線上的兩點,則y1=y2.上述說法正確的是( 。
| A. | ①②④ | B. | ③④ | C. | ①③④ | D. | ①② |
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
定義[x]為不超過x的最大整數(shù),如[3.6]=3,[0.6]=0,[﹣3.6]=﹣4.對于任意實數(shù)x,下列式子中錯誤的是( 。
| A. | [x]=x(x為整數(shù)) | B. | 0≤x﹣[x]<1 |
| C. | [x+y]≤[x]+[y] | D. | [n+x]=n+[x](n為整數(shù)) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
問題探究:
(一)新知學(xué)習(xí):
圓內(nèi)接四邊形的判斷定理:如果四邊形對角互補(bǔ),那么這個四邊形內(nèi)接于圓(即如果四邊形EFGH的對角互補(bǔ),那么四邊形EFGH的四個頂點E、F、G、H都在同個圓上).
(二)問題解決:
已知⊙O的半徑為2,AB,CD是⊙O的直徑.P是上任意一點,過點P分別作AB,CD的垂線,垂足分別為N,M.
(1)若直徑AB⊥CD,對于上任意一點P(不與B、C重合)(如圖一),證明四邊形PMON內(nèi)接于圓,并求此圓直徑的長;
(2)若直徑AB⊥CD,在點P(不與B、C重合)從B運(yùn)動到C的過程匯總,證明MN的長為定值,并求其定值;
(3)若直徑AB與CD相交成120°角.
①當(dāng)點P運(yùn)動到的中點P1時(如圖二),求MN的長;
②當(dāng)點P(不與B、C重合)從B運(yùn)動到C的過程中(如圖三),證明MN的長為定值.
(4)試問當(dāng)直徑AB與CD相交成多少度角時,MN的長取最大值,并寫出其最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,邊長為a,b的矩形的周長為14,面積為10,則a2b+ab2的值為( )
| A. | 140 | B. | 70 | C. | 35 | D. | 24 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,直線y=2x+4與x,y軸分別交于A,B兩點,以O(shè)B為邊在y軸右側(cè)作等邊三角形OBC,將點C向左平移,使其對應(yīng)點C′恰好落在直線AB上,則點C′的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在△ABC中,∠ABC=90°,以AB的中點O為圓心、OA為半徑的圓交AC于點D,E是BC的中點,連接DE,OE.
(1)判斷DE與⊙O的位置關(guān)系,并說明理由;
(2)求證:BC2=CD•2OE;
(3)若cos∠BAD=,BE=6,求OE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
晉商大院的許多窗格圖案蘊(yùn)含著對稱之美,現(xiàn)從中選取以下四種窗格圖案,其中是中心對稱圖形但不是軸對稱圖形的是( 。
| A. | B. | C. | D. |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com