試題分析:①②設A(x
1,y
1),B(x
2,y
2),聯立
與
,得x
2-bx+k=0,則x
1•x
2=k,又x
1•y
1=k,比較可知x
2=y
1,同理可得x
1=y
2,即ON=OM,AM=BN,可證結論;
③作OH⊥AB,垂足為H,根據對稱性可證△OAM≌△OAH≌△OBH≌△OBN,可證S
△AOB=k;
④延長MA,NB交于G點,可證△ABG為等腰直角三角形,當AB=
時,GA=GB=1,則ON-BN=GN-BN=GB=1.
A(x
1,y
1),B(x
2,y
2),代入
中,得x
1•y
1=x
2•y
2=k,
聯立
與
,得x
2-bx+k=0,
則x
1•x
2=k,又x
1•y
1=k,
∴x
2=y
1,
同理x
2•y
2=k,
可得x
1=y
2,
∴ON=OM,AM=BN,
∴①OA=OB,②△AOM≌△BON,正確;
③作OH⊥AB,垂足為H,
∵OA=OB,∠AOB=45°,
∵②△AOM≌△BON,正確;
∴∠MOA=∠BON=22.5°,
∠AOH=∠BOH=22.5°,
∴△OAM≌△OAH≌△OBH≌△OBN,
∴S
△AOB=S
△AOH+S
△BOH=S
△AOM+S
△BON=
k+
k=k,正確;
④延長MA,NB交于G點
∵NG=OM=ON=MG,BN=AM,
∴GB=GA,
∴△ABG為等腰直角三角形,
當AB=
時,GA=GB=1,
∴ON-BN=GN-BN=GB=1,正確.
正確的結論有①②③④.
故選A.
點評:解題的關鍵是明確反比例函數圖象上點的坐標特點,反比例函數圖象的對稱性.