點P(1,1),點A在坐標軸上,△AOP為等腰三角形,則符合條件的點A有


  1. A.
    7個
  2. B.
    8個
  3. C.
    9個
  4. D.
    10個
B
分析:等腰三角形要判斷腰長的情況,本題可先設P點的坐標,根據(jù)OA是底邊、腰幾種情況下手進行討論即可得出答案.
解答:解:(1)若AO作為腰時,有兩種情況,
①當A是頂角頂點時,P是以A為圓心,以OA為半徑的圓與x軸的交點,共有1個,若OA是底邊時,P是OA的中垂線與x軸的交點,有1個
②當O是頂角頂點時,P是以O為圓心,以OA為半徑的圓與x軸的交點,有2個;
(2)若OA是底邊時,P是OA的中垂線與x軸的交點,有1個.
以上4個交點沒有重合的.故符合條件的點有4個.
同理,在y軸上符合條件的點A也有4個.
故符合條件的點A共有8個.
故選B.
點評:本題考查了等腰三角形的判定;分情況進行討論,能夠把各種情況能夠討論全是解決本題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標系中,已知點A(-3,6),點B,點C分別在x軸的負半軸和正半軸上,精英家教網(wǎng)OB,OC的長分別是方程x2-4x+3=0的兩根(OB<OC).
(1)求B,C兩點的坐標;
(2)在坐標平面內是否存在點Q和點P(點P在直線AC上),使以O、P、C、Q為頂點的四邊形是正方形?若存在,請直接寫出Q點的坐標;若不存在,請說明理由;
(3)若平面內有M(1,-2),D為線段OC上一點,且滿足∠DMC=∠BAC,∠MCD=45°,求直線AD的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

18、如果將點P繞定點M旋轉180°后與點Q重合,那么點P與點Q關于點M對稱,定點M叫對稱中心,此時,點M是線段PQ的中點.如圖,在直角坐標系中,△ABO的頂點A、B、O的坐標分別為(1,0)、(0,1)、(0,0),點列P1、P2、P3、…中的相鄰兩點都關于△ABO的一個頂點對稱,點P1與點P2關于點A對稱,點P2與點P3關于點B對稱,點P3與點P4關于點O對稱,點P4與點P5關于點A對稱,點P5與點P6關于點B對稱,點P6與點P7關于點O對稱,…,且這些對稱中心依次循環(huán),已知P1的坐標是(1,1),點P100的坐標為
(1,-3)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•黃浦區(qū)二模)已知一次函數(shù)y=x+1的圖象和二次函數(shù)y=x2+bx+c的圖象都經過A、B兩點,且點A在y軸上,B點的縱坐標為5.
(1)求這個二次函數(shù)的解析式;
(2)將此二次函數(shù)圖象的頂點記作點P,求△ABP的面積;
(3)已知點C、D在射線AB上,且D點的橫坐標比C點的橫坐標大2,點E、F在這個二次函數(shù)圖象上,且CE、DF與y軸平行,當CF∥ED時,求C點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,拋物線y1與y2都與x軸交于點O(0,0)和點A,y1的頂點是B(2,-1),y2的頂點是C(2,-3),P是y1上的一個動點,過P作y軸的平行線交y2于點Q,分別過P,Q作x軸的平行線,分別交y1,y2于點P′,Q′,連接P′Q′.
(1)四邊形PP′Q′Q 是
形.
(2)求y1與y2關于x的函數(shù)關系式.
(3)設P點的橫坐標為t(t>2且t≠4),四邊形PP′Q′Q的周長為y,試求y與t的函數(shù)關系式.
(4)當四邊形PP′Q′Q是正方形,請直接寫出P點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•恩施州)如圖所示,直線l:y=3x+3與x軸交于點A,與y軸交于點B.把△AOB沿y軸翻折,點A落到點C,拋物線過點B、C和D(3,0).
(1)求直線BD和拋物線的解析式.
(2)若BD與拋物線的對稱軸交于點M,點N在坐標軸上,以點N、B、D為頂點的三角形與△MCD相似,求所有滿足條件的點N的坐標.
(3)在拋物線上是否存在點P,使S△PBD=6?若存在,求出點P的坐標;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案