在相同時刻的物高與影長成比例,如果高為1.5m的測桿的影長為2.5m,那么影長為30 m的旗桿的高是 m.

 

18.

【解析】

試題分析:設(shè)旗桿高為x,根據(jù)同一時刻同一地點任何物體的高與其影子長比值是相同的得1.5:2.5=x:30,∴x=18,∴旗桿高為18m.故答案為:18.

考點:相似三角形的應(yīng)用.

 

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2014-2015學年江蘇省無錫市八年級上學期期中考試數(shù)學試卷(解析版) 題型:解答題

如圖,已知正方形ABCD的邊長為10cm,點E在邊AB上,且AE=4cm,

(1)如果點P在線段BC上以2cm/s的速度由B點向C點運動,同時,點Q在線段CD上由C點向D點運動.

①若點Q的運動速度與點P的運動速度相等,經(jīng)過2秒后,△BPE與△CQP是否全等?請說明理由.

②若點Q的運動速度與點P的運動速度不相等,當點Q的運動速度為________cm/s時,在某一時刻也能夠使△BPE與△CQP全等.

(2)若點Q以②中的運動速度從點C出發(fā),點P以原來的運動速度從點B同時出發(fā),都逆時針沿正方形ABCD的四條邊運動.求經(jīng)過多少秒后,點P與點Q第一次相遇,并寫出第一次相遇點在何處?

 

查看答案和解析>>

科目:初中數(shù)學 來源:2014-2015學年江蘇省無錫市北塘區(qū)九年級上學期期中考試數(shù)學試卷(解析版) 題型:填空題

一元二次方程的兩根之積是 _______.

 

查看答案和解析>>

科目:初中數(shù)學 來源:2014-2015學年江蘇省無錫市九年級上學期期中考試數(shù)學試卷(解析版) 題型:解答題

(本題滿分6分)進入3月份,我市“兩橫三縱”快速路系統(tǒng)全線開工.為緩解市區(qū)內(nèi)一些主要路段交通擁擠的現(xiàn)狀,交警部門在一些主要路口設(shè)立了如圖所示的交通路況顯示牌.已知立桿AB的高度是3米,從地面上某處D點測得顯示牌頂端C點和底端B點的仰角分別是62°和45°.求路況顯示牌BC的高度.(精確到0.1米)

【參考數(shù)據(jù):,

 

 

查看答案和解析>>

科目:初中數(shù)學 來源:2014-2015學年江蘇省無錫市九年級上學期期中考試數(shù)學試卷(解析版) 題型:填空題

如圖,在寬為20米、長為32米的矩形地面上修筑同樣寬的道路(圖中陰影部分),余下部分種植草坪.要使草坪的面積為540米,則道路的寬為 米.

 

 

查看答案和解析>>

科目:初中數(shù)學 來源:2014-2015學年江蘇省無錫市九年級上學期期中考試數(shù)學試卷(解析版) 題型:選擇題

如圖,AB是⊙O的直徑,點D在AB的延長線上,過點D作⊙O的切線,切點為C,若∠A=25°,則∠D = ( )

A.60° B.65° C.50° D.40°

 

查看答案和解析>>

科目:初中數(shù)學 來源:2014-2015學年江蘇省無錫市八年級上學期期中考試數(shù)學試卷(解析版) 題型:解答題

(本題12分)在△ABC中, AB、BC、AC三邊的長分別為、、,求這個三角形的面積.小華同學在解答這道題時,先畫一個正方形網(wǎng)格(每個小正方形的邊長為1),再在網(wǎng)格中畫出格點△ABC(即△ABC三個頂點都在小正方形的頂點處),如圖1所示.這樣不需求△ABC的高,而借用網(wǎng)格就能計算出它的面積.這種方法叫做構(gòu)圖法.

(1)△ABC的面積為: .

(2)若△DEF三邊的長分別為、、,請在圖2的正方形網(wǎng)格中畫出相應(yīng)的△DEF,并利用構(gòu)圖法求出它的面積.

(3)如圖3,一個六邊形的花壇被分割成7個部分,其中正方形PRBA,RQDC,QPFE的面積分別為13、10、17,

①試說明△PQR、△BCR、△DEQ、△AFP的面積相等;

②請利用第2小題解題方法求六邊形花壇ABCDEF的面積.

 

查看答案和解析>>

科目:初中數(shù)學 來源:2014-2015學年江蘇省無錫市八年級上學期期中考試數(shù)學試卷(解析版) 題型:選擇題

如圖,△ABC的面積為1cm2,AP垂直∠B的平分線BP于P,則△PBC的面積為 ( )

A.0.4 cm2 B.0.5 cm2 C.0.6 cm2 D.0.7 cm2

 

查看答案和解析>>

科目:初中數(shù)學 來源:2014-2015學年江蘇省揚州市邗江區(qū)八年級上學期期中測試數(shù)學試卷(解析版) 題型:解答題

(8分)如圖,已知△ABC是等邊三角形,點D、E分別在AC、BC上,且CD=BE,求:∠AFD的度數(shù)?.

 

 

查看答案和解析>>

同步練習冊答案