【題目】課題學習:我們知道二次函數(shù)的圖象是拋物線,它也可以這樣定義:如果一個動點M(x,y)到定點A(0,m)(m>0)的距離與它到定直線y=﹣m的距離相等,那么動點M形成的圖形就是拋物線y=ax2(a>0)的圖象,如圖所示.

(1)探究:當x≠0時,a與m有何數(shù)量關(guān)系?
(2)應用:已知動點M(x,y)到定點A(0,4)的距離與到定直線y=﹣4的距離相等,請寫出動點M形成的拋物線的解析式.
(3)拓展:根據(jù)拋物線的平移變換,拋物線y= (x﹣1)2+2的圖象可以看作到定點A( , )的距離與它到定直線y=的距離相等的動點M(x,y)所形成的圖形.
(4)若點D的坐標是(1,8),在(2)中求得的拋物線上是否存在點P,使得PA+PD最短?若存在,求出點P的坐標,若不存在,請說明理由.

【答案】
(1)

解:由定義可知,MA=MB,

∴x2+(y﹣m)2=(y+m)2,

∵y=ax2

∴x2= ,

=4my,

∴a=


(2)

解:由(1)可知,a= ,

∴拋物線的解析式為y= x2


(3)1;3;1
(4)

解:如圖所示,過點D作直線y=﹣4的垂線垂足為M,與拋物線的交點就是的點P,此時PA+PD=PD+PM最短(垂線段最短),

此時點P坐標(1, ).


【解析】解:(3)∵拋物線頂點坐標(1,2),a=1,
∴拋物線y= (x﹣1)2+2的圖象可以看作到定點A(1,3)的距離與它到定直線y=1的距離相等的動點M(x,y)所形成的圖形.
所以答案是1,3,1.
【考點精析】關(guān)于本題考查的二次函數(shù)的圖象,需要了解二次函數(shù)圖像關(guān)鍵點:1、開口方向2、對稱軸 3、頂點 4、與x軸交點 5、與y軸交點才能得出正確答案.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知A(1,2),B(3,1),C(﹣2,﹣1).

(1)在圖中作出△ABC關(guān)于y軸對稱的△A1B1C1

(2)直接寫出點A1,B1,C1的坐標.

A1 , B1  , C1  ;

(3)請你求出△A1B1C1的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABC中,B=90°,AB=16cm,BC=12cm,P、Q是ABC邊上的兩個動點,其中點P從點A開始沿A→B方向運動,且速度為每秒1cm,點Q從點B開始沿B→C→A方向運動,且速度為每秒2cm,它們同時出發(fā),設(shè)出發(fā)的時間為t秒.

(1)出發(fā)2秒后,求PQ的長;

(2)當點Q在邊BC上運動時,出發(fā)幾秒鐘后,PQB能形成等腰三角形?

(3)當點Q在邊CA上運動時,求能使BCQ成為等腰三角形的運動時間.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,P是拋物線y=x2﹣4x+3上的一點,以點P為圓心、1個單位長度為半徑作⊙P,當⊙P與直線y=0相切時,點P的坐標為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2017年中秋節(jié)期間,某商城隆重開業(yè),某商家有計劃選購甲、乙兩種禮盒作為開業(yè)期間給予買家的禮品,已知甲禮盒的單價是乙禮盒單價的1.5倍;用600元單獨購買甲種禮盒比單獨購買乙種禮盒要少10個.

(1)求甲、乙兩種禮盒的單價分別為多少元?

(2)若商家計劃購買這兩種禮盒共40個,且投入的經(jīng)費不超過1050元,則購買的甲種禮盒最多買多少個?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:AOB和兩點C、D,求作一點P,使PC=PD,且點P到AOB的兩邊的距離相等.

(要求:用尺規(guī)作圖,保留作圖痕跡,寫出作法,不要求證明).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關(guān)于x的方程x2﹣2(k+1)x+k2=0有兩個實數(shù)根x1、x2
(1)求k的取值范圍;
(2)若x1+x2=3x1x2﹣6,求k的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知非RtABC中,∠A=45°,高BD、CE所在的直線交于點H,畫出圖形并求出∠BHC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一個不透明的箱子里,裝有黃、白、黑各一個球,它們除了顏色之外沒有其他區(qū)別.
(1)隨機從箱子里取出1個球,則取出黃球的概率是多少?
(2)隨機從箱子里取出1個球,放回攪勻再取第二個球,請你用畫樹狀圖或列表的方法表示出所有可能出現(xiàn)的結(jié)果,并求兩次取出的都是白色球的概率.

查看答案和解析>>

同步練習冊答案