【題目】已知非Rt△ABC中,∠A=45°,高BD、CE所在的直線交于點H,畫出圖形并求出∠BHC的度數(shù).
【答案】135°或45°
【解析】
試題分兩種情況進行討論:①△ABC是銳角三角形時,先根據(jù)高線的定義求出∠ADB=90°,∠BEC=90°,然后根據(jù)直角三角形兩銳角互余求出∠ABD,再根據(jù)三角形的一個外角等于與它不相鄰的兩個內角的和列式進行計算即可得解;②△ABC是鈍角三角形時,根據(jù)直角三角形兩銳角互余求出∠BHC=∠A,從而得解.
試題解析:①如圖1,△ABC是銳角三角形時,
∵BD、CE是△ABC的高線,
∴∠ADB=90°,∠BEC=90°,
在△ABD中,∵∠A=45°,
∴∠ABD=90°-45°=45°,
∴∠BHC=∠ABD+∠BEC=45°+90°=135°;
②△ABC是鈍角三角形時,∵BD、CE是△ABC的高線,
∴∠A+∠ACE=90°,∠BHC+∠HCD=90°,
∵∠ACE=∠HCD(對頂角相等),
∴∠BHC=∠A=45°,
綜上所述,∠BHC的度數(shù)是135°或45.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A是反比例函數(shù)y=(m<0)位于第二象限的圖像上的一個動點,過點A作AC⊥x
軸于點C;M為是線段AC的中點,過點M作AC的垂線,與反比例函數(shù)的圖像及y軸分別交于B、
D兩點.順次連接A、B、C、D.設點A的橫坐標為n.
(1)求點B的坐標(用含有m、n的代數(shù)式表示);
(2)求證:四邊形ABCD是菱形;
(3)若△ABM的面積為2,當四邊形ABCD是正方形時,求直線AB的函數(shù)表達式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】課題學習:我們知道二次函數(shù)的圖象是拋物線,它也可以這樣定義:如果一個動點M(x,y)到定點A(0,m)(m>0)的距離與它到定直線y=﹣m的距離相等,那么動點M形成的圖形就是拋物線y=ax2(a>0)的圖象,如圖所示.
(1)探究:當x≠0時,a與m有何數(shù)量關系?
(2)應用:已知動點M(x,y)到定點A(0,4)的距離與到定直線y=﹣4的距離相等,請寫出動點M形成的拋物線的解析式.
(3)拓展:根據(jù)拋物線的平移變換,拋物線y= (x﹣1)2+2的圖象可以看作到定點A( , )的距離與它到定直線y=的距離相等的動點M(x,y)所形成的圖形.
(4)若點D的坐標是(1,8),在(2)中求得的拋物線上是否存在點P,使得PA+PD最短?若存在,求出點P的坐標,若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)與x軸交于點A(1,0)和點B(﹣3,0),與y軸交于點C,且OC=OB.
(1)求此拋物線的解析式;
(2)若點E為第二象限拋物線上一動點,連接BE,CE,求四邊形BOCE面積的最大值,并求出此時點E的坐標;
(3)點P在拋物線的對稱軸上,若線段PA繞點P逆時針旋轉90°后,點A的對應點A′恰好也落在此拋物線上,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明用尺規(guī)作圖作△ABC邊AC上的高BH,作法如下:
①分別以點D,E為圓心,大于DE的長為半徑作弧,兩弧交于F;
②作射線BF,交邊AC于點H;
③以B為圓心,BK長為半徑作弧,交直線AC于點D和E;
④取一點K,使K和B在AC的兩側;
所以,BH就是所求作的高. 其中順序正確的作圖步驟是( 。
A. ①②③④ B. ④③②① C. ②④③① D. ④③①②
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:△ABC是等邊三角形.
(1)如圖,點D在AB邊上,點E在AC邊上,BD=CE,BE與CD交于點F.試判斷BF與CF的數(shù)量關系,并加以證明;
(2)點D是AB邊上的一個動點,點E是AC邊上的一個動點,且BD=CE,BE與CD交于點F.若△BFD是等腰三角形,求∠FBD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△DEF中,DE=DF,點B在EF邊上,且∠EBD=60°,C是射線BD上的一個動點(不與點B重合,且BC≠BE),在射線BE上截取BA=BC,連接AC.
(1)當點C在線段BD上時,
①若點C與點D重合,請根據(jù)題意補全圖1,并直接寫出線段AE與BF的數(shù)量關系為________;
②如圖2,若點C不與點D重合,請證明AE=BF+CD;
(2)當點C在線段BD的延長線上時,用等式表示線段AE,BF,CD之間的數(shù)量關系,不用證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線y1=﹣ x+1與x軸交于點A,與直線y2=﹣ x交于點B.
(1)求△AOB的面積;
(2)求y1>y2時x的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com