【題目】解下列各題:
(1)先化簡,再求代數(shù)式(的值,其中x=cos30°+;
(2)已知α是銳角,且sin(α+15°)=.計(jì)算-4cosα-(π-3.14)0+tanα+()-1的值.
【答案】(1) x+1, 3;(2)3
【解析】
(1) 先將括號(hào)內(nèi)的分式通分,然后進(jìn)行加減,再將除法轉(zhuǎn)化為乘法進(jìn)行計(jì)算,然后化簡x=cos30°+,將所得數(shù)值代入化簡后的分式即可.
(2) 根據(jù)特殊角的三角函數(shù)值得出α,然后利用二次根式、特殊角的三角函數(shù)值、零指數(shù)冪、負(fù)指數(shù)冪的性質(zhì)進(jìn)行化簡,根據(jù)實(shí)數(shù)運(yùn)算法則即可計(jì)算出結(jié)果.
(1) 原式==x+1,
當(dāng)x=cos30°+=×+=2時(shí),原式=2+1=3.
(2) ∵sin60°=,
∴α+15°=60°,
∴α=45°,
∴原式=2-4×-1+1+3=3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,E是AB上一點(diǎn),F是AD延長線上一點(diǎn),且DF=BE.
(1)求證:CE=CF;
(2)若點(diǎn)G在AD上,且∠GCE=45°,則GE=BE+GD成立嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠ABC=∠ACB,BD、CD、BE分別平分△ABC的內(nèi)角∠ABC、外角∠ACP、外角∠MBC.以下結(jié)論:①AD∥BC;②DB⊥BE;③∠BDC+∠ABC=90°;④∠A+2∠BEC=180°;⑤DB平分∠ADC.其中正確的結(jié)論有( )
A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AD是高,AE、BF是角平分線,它們相交于點(diǎn)O,∠ABC=70°,∠C=30°,求∠DAE和∠AOB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC是等邊三角形,點(diǎn)D、E分別在AC、BC上,且CD=BE,
(1)求證:△ABE≌△BCD;
(2)求出∠AFB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠ACB=90°,AC=BC,直線MN經(jīng)過點(diǎn)C,且AD⊥MN于D,BE⊥MN于E.
(1)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖1的位置時(shí),求證:①△ADC≌△CEB;②DE=AD+BE;
(2)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖2的位置時(shí),求證:DE=AD﹣BE;
(3)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖3的位置時(shí),試問DE、AD、BE具有怎樣的等量關(guān)系?請(qǐng)寫出這個(gè)等量關(guān)系,并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1是一個(gè)長為2m、寬為2n的長方形,沿圖中虛線用剪刀平均分成四塊小長方形,然后按圖2的形狀拼成一個(gè)正方形.
(1)請(qǐng)用兩種不同的方法求圖2中陰影部分的面積.
方法1: ;
方法2: ;
(2)觀察圖2,請(qǐng)你寫出下列三個(gè)代數(shù)式:之間的等量關(guān)系: ;(3)根據(jù)(2)題中的等量關(guān)系,解決下面的問題:已知a+b=3,ab=2 , 求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,∠1=∠2,則不一定能使△ABD≌△ACD的條件是 ( )
A. AB=AC B. BD=CD C. ∠B=∠C D. ∠BDA=∠CDA
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com