【題目】在菱形ABCD中,∠BAD=α,E為對(duì)角線(xiàn)AC上的一點(diǎn)(不與A,C重合),將射線(xiàn)EB繞點(diǎn)E順時(shí)針旋轉(zhuǎn)β角之后,所得射線(xiàn)與直線(xiàn)AD交于F點(diǎn).試探究線(xiàn)段EB與EF的數(shù)量關(guān)系.
(1)如圖1,當(dāng)α=β=90°時(shí),EB與EF的數(shù)量關(guān)系為 .
(2)如圖2,當(dāng)α=60°,β=120°時(shí).
①依題意補(bǔ)全圖形;
②探究(1)的結(jié)論是否成立.若成立,請(qǐng)給出證明;若不成立,請(qǐng)舉出反例說(shuō)明;
(3)在此基礎(chǔ)上對(duì)一般的圖形進(jìn)行了探究,設(shè)∠ABE=γ,若旋轉(zhuǎn)后所得的線(xiàn)段EF與EB的數(shù)量關(guān)系滿(mǎn)足(1)中的結(jié)論,請(qǐng)直接寫(xiě)出角α,β,γ滿(mǎn)足的關(guān)系: .
【答案】(1)EB=EF;(2)①見(jiàn)解析;②結(jié)論依然成立EB=EF,證明見(jiàn)解析;(3)α+β=180°或°.
【解析】
(1)過(guò)E作EM⊥AD于M,EN⊥AB于N.當(dāng)α=β=90°時(shí),菱形ABCD是正方形,可以證明ANEM是正方形,再證明△EMF≌△ENB,即可得出結(jié)論;
(2)①依題意補(bǔ)全圖形如圖2所示,②證法1,利用菱形的性質(zhì)得出,∠DAC=∠BAC,再用角平分線(xiàn)的性質(zhì),得出EM=EN,進(jìn)而判斷出△EFM≌△EBN即可;
證法2,利用菱形的性質(zhì)直接判斷出△AED≌△AEB,即可得出結(jié)論;
(3)直接得出結(jié)論.
(1)EB=EF.理由如下:
過(guò)E作EM⊥AD于M,EN⊥AB于N.當(dāng)α=β=90°時(shí),菱形ABCD是正方形,∴∠DAC=∠CAB=45°,∴EM=EN,∴ANEM是正方形,∴∠NEM=90°.
∵∠FEB=90°,∴∠MEF=∠NEB.
∵∠EMF=∠ENB=90°,∴△EMF≌△ENB,∴EB=EF.
故答案為:EB=EF;
(2)①補(bǔ)全圖形如圖2所示:
②結(jié)論依然成立EB=EF.理由如下:
證法1:如圖3.
過(guò)點(diǎn)E作EM⊥AF于M,EN⊥AB于N.
∵四邊形ABCD為菱形,∴∠CAD=∠CAB.
∵EM⊥AF,EN⊥AB,∴∠FME=∠N=90°,EM=EN.
∵∠BAD=60°,∠BEF=120°,∴∠F+∠ABE=360°﹣∠BAD﹣∠BEF=180°.
∵∠ABE+∠EBN=180°,∴∠F=∠EBN.
在△EFM與△EBN中,∵,∴△EFM≌△EBN,∴EF=EB;
證法2:如圖4,連接ED.
∵四邊形ABCD是菱形,∴AD=AB,∠DAC=∠BAE.
又∵AE=AE,∴△ADE≌△ABE,∴ED=EB,∠ADE=∠ABE.
又∵∠DAB=60°,∠BEF=120°,∴∠F+∠ABE=180°.
又∵∠ADE+∠FDE=180°,∴∠F=∠FDE,∴EF=ED,∴EF=EB.
(3)α+β=180°或°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠BAC的平分線(xiàn)交BC于點(diǎn)D,點(diǎn)O在AB上,以點(diǎn)O為圓心,OA為半徑的圓恰好經(jīng)過(guò)點(diǎn)D,分別交AC,AB于點(diǎn)E,F(xiàn).
(1)試判斷直線(xiàn)BC與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)若BD=2,BF=2,求陰影部分的面積(結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在菱形ABCD中,AB=6,tan∠ABC=2,點(diǎn)E是射線(xiàn)DA上的一個(gè)動(dòng)點(diǎn),連接CE,將線(xiàn)段CE繞點(diǎn)C順時(shí)針旋轉(zhuǎn)一個(gè)角α(α=∠BCD),得到對(duì)應(yīng)線(xiàn)段CF.
(1)求證:△BCE≌△DCF;
(2)求線(xiàn)段DF的長(zhǎng)度的最小值;
(3)如圖2,連接BD、EF.BD交EC、EF于點(diǎn)P、Q.當(dāng)△EPQ是直角三角形時(shí),求DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在一個(gè)可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤(pán)中,指針位置固定,三個(gè)扇形的面積都相等,且分別標(biāo)有數(shù)字1,2,3.
(1)小明轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)一次,當(dāng)轉(zhuǎn)盤(pán)停止轉(zhuǎn)動(dòng)時(shí),指針?biāo)干刃沃械臄?shù)字是奇數(shù)的概率為________;
(2)小明先轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)一次,當(dāng)轉(zhuǎn)盤(pán)停止轉(zhuǎn)動(dòng)時(shí),記錄下指針?biāo)干刃沃械臄?shù)字;接著再轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)一次,當(dāng)轉(zhuǎn)盤(pán)停止轉(zhuǎn)動(dòng)時(shí),再次記錄下指針?biāo)干刃沃械臄?shù)字,求這兩個(gè)數(shù)字之和是3的倍數(shù)的概率(用畫(huà)樹(shù)狀圖或列表等方法求解)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等腰梯形ABCD中,AB=DC,點(diǎn)M,N分別是AD,BC的中點(diǎn),點(diǎn)E,F分別是BM,CM的中點(diǎn). (1)求證:四邊形MENF是菱形; (2)當(dāng)四邊形MENF是正方形時(shí),求證:等腰梯形ABCD的高是底邊BC的一半.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角三角形ABC中,∠ACB=90°,D、E是邊AB上兩點(diǎn),且CE所在直線(xiàn)垂直平分線(xiàn)段AD,CD平分∠BCE,BC=2,則AB=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為5,點(diǎn)A的坐標(biāo)為(﹣4,0),點(diǎn)B在y軸上,若反比例函數(shù)y=(k≠0)的圖象過(guò)點(diǎn)C,則該反比例函數(shù)的表達(dá)式為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知方程ax2+bx+c=0(a≠0)是關(guān)于x的一元二次方程.
(1)直接寫(xiě)出方程根的判別式;
(2)寫(xiě)出求根公式的推導(dǎo)過(guò)程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的邊OA在y軸的正半軸上,C在x軸的正半軸上,已知A(0,8)、C(10,0),作∠AOC的平分線(xiàn)交AB于點(diǎn)D,連接CD,過(guò)點(diǎn)D作DE⊥CD交OA于點(diǎn)E.
(1)求點(diǎn)D的坐標(biāo);
(2)求證:△ADE≌△BCD;
(3)拋物線(xiàn)y=x2﹣x+8經(jīng)過(guò)點(diǎn)A、C,連接AC.探索:若點(diǎn)P是x軸下方拋物線(xiàn)上一動(dòng)點(diǎn),過(guò)點(diǎn)P作平行于y軸的直線(xiàn)交AC于點(diǎn)M.是否存在點(diǎn)P,使線(xiàn)段MP的長(zhǎng)度有最大值?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com