【題目】在數(shù)軸上點(diǎn)A表示-3,點(diǎn)B表示4.
(1)點(diǎn)A與點(diǎn)B之間的距離是 ;
(2)我們知道,在數(shù)軸上|a|表示數(shù)a所對(duì)應(yīng)的點(diǎn)到原點(diǎn)的距離,你能說明在數(shù)軸上表示的意義嗎?
(3)在數(shù)軸上點(diǎn)P表示的數(shù)為x,是否存在這樣的點(diǎn)P,使2PA+PB=12?若存在,請(qǐng)求出相應(yīng)的x;若不存在,請(qǐng)說明理由.
【答案】(1)7;(2)見解析;(3)存在,x=或2
【解析】
(1)根據(jù)數(shù)軸上兩點(diǎn)距離公式計(jì)算即可.
(2)根據(jù)絕對(duì)值的幾何意義即可得出
(3)根據(jù)數(shù)軸上兩點(diǎn)距離公式,分三類討論:①當(dāng)P在點(diǎn)A左側(cè)時(shí);②當(dāng)點(diǎn)P在AB之間時(shí);③當(dāng)P在B右側(cè)時(shí).
解:(1)4-(-3)=7
∴點(diǎn)A與點(diǎn)B之間的距離是7
故答案為:7
(2)∵在數(shù)軸上|a|表示數(shù)a所對(duì)應(yīng)的點(diǎn)到原點(diǎn)的距離,
∴在數(shù)軸上表示數(shù)-3的點(diǎn)和數(shù)-5的點(diǎn)之間的距離
(3)①當(dāng)P在點(diǎn)A左側(cè)時(shí),PA=-3-x,PB=4-x;
∵2PA+PB=12
∴2(-3-x)+(4-x) =12
∴x=
②當(dāng)點(diǎn)P在AB之間時(shí);PA=x+3,PB=4-x;
∴2(x+3)+(4-x) =12
∴x=2
③當(dāng)P在B右側(cè)時(shí);PA=x+3,PB=x-4;
∴2(x+3)+(x-4) =12
∴x= 不合題意舍去
綜上所述:當(dāng)x=或2時(shí),使2PA+PB=12
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將若干個(gè)同樣大小的小長(zhǎng)方形紙片拼成如圖形狀的大長(zhǎng)方形小長(zhǎng)方形紙片長(zhǎng)為a,寬為,請(qǐng)你仔細(xì)觀察圖形,解答下列問題:
(1)a和b之間的關(guān)系滿足_____________________.
(2)圖中陰影部分的面積與大長(zhǎng)方形面積的比值是___________.
(3)請(qǐng)你仔細(xì)觀察圖中的一個(gè)陰影部分,根據(jù)它面積的不同表示方法,請(qǐng)你寫出,與三個(gè)代數(shù)式之間的等量關(guān)系_________________________
應(yīng)用:根據(jù)探索中的等量關(guān)系,解決如下問題:求的值
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市居民生活用水的費(fèi)用由“城市供水費(fèi)” 和“污水處理費(fèi)”兩部分組成.為了鼓勵(lì)市民節(jié)約用水, 其中城市供水費(fèi)按階梯式計(jì)費(fèi):一個(gè)月用水 10 噸以內(nèi)(包括 10 噸)的用戶,每噸收 1.5 元;一個(gè)月用水超過 10 噸的用戶,10 噸水仍按每噸 1.5 元收費(fèi),超過 10 噸的部分,按每噸 2 元收費(fèi).另外污水處理費(fèi)按每噸 0.65 元收。
(1)某居民 5 月份用水 8 噸,應(yīng)交水費(fèi)多少元?
(2)某居民 6 月份用水 12 噸,應(yīng)交水費(fèi)多少元?
(3)若某戶某月用水 x 噸,請(qǐng)你用含有 x 的代數(shù)式表示該月應(yīng)交的水費(fèi)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用一個(gè)平面去截正方體(如圖),下列關(guān)于截面(截出的面)形狀的結(jié)論:
①可能是銳角三角形;②可能是鈍角三角形;
③可能是長(zhǎng)方形;④可能是梯形.
其中正確結(jié)論的是______(填序號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知A、F、C、D四點(diǎn)在同一條直線上,AC=DF,AB//DE,EF//BC,
求證:(1)⊿ABC≌⊿DEF
(2)∠CBF=∠FEC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀思考:
數(shù)學(xué)課上老師出了一道分式化簡(jiǎn)求值題目.
題目:÷(x+1)·-,其中x=-.
“勤奮”小組的楊明同學(xué)展示了他的解法:
解:原式=- ..................第一步
=- ................ ..第二步
= ..........................第三步
= ..................................第四步
當(dāng)x=-時(shí),原式= .......................第五步
請(qǐng)你認(rèn)真閱讀上述解題過程,并回答問題:
你認(rèn)為該同學(xué)的解法正確嗎?如有錯(cuò)誤,請(qǐng)指出錯(cuò)誤在第幾步,并寫出完整、正確的解答過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖1所示是一枚質(zhì)地均勻的骰子.骰子有六個(gè)面并分別代表數(shù)字1,2,3,4,5,6.如圖2,正六邊形ABCDEF的頂點(diǎn)處各有一個(gè)圈.跳圈游戲的規(guī)則為:游戲者每擲一次骰子,骰子向上的一面上的點(diǎn)數(shù)是幾,就沿正六邊形的邊順時(shí)針方向連續(xù)跳幾個(gè)邊長(zhǎng).如:若從圈A起跳,第一次擲得3,就順時(shí)針連續(xù)跳3個(gè)邊長(zhǎng),落到圈D;若第二次擲得2,就從圈D開始順時(shí)針連續(xù)跳2個(gè)邊長(zhǎng),落到圈F……
設(shè)游戲者從圈A起跳.
(1)小明隨機(jī)擲一次骰子,求落回到圈A的概率P1;
(2)小亮隨機(jī)擲兩次骰子,用列表法或畫樹狀圖法求最后落回到圈A的概率P2,并指出他與小明落回到圈A的可能性一樣嗎?
圖1 圖2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,△ABC是等邊三角形,AE=CD,BQ⊥AD于Q,BE交AD于點(diǎn)P.
(1)求證:△ABE≌△CAD;
(2)若PQ=2,BE=5,求PE的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知反比例函數(shù)的圖象與反比例函數(shù)的圖象關(guān)于軸對(duì)稱,,是函數(shù)圖象上的兩點(diǎn),連接,點(diǎn)是函數(shù)圖象上的一點(diǎn),連接,.
(1)求,的值;
(2)求所在直線的表達(dá)式;
(3)求的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com