【題目】閱讀思考:
數學課上老師出了一道分式化簡求值題目.
題目:÷(x+1)·-,其中x=-.
“勤奮”小組的楊明同學展示了他的解法:
解:原式=- ..................第一步
=- ................ ..第二步
= ..........................第三步
= ..................................第四步
當x=-時,原式= .......................第五步
請你認真閱讀上述解題過程,并回答問題:
你認為該同學的解法正確嗎?如有錯誤,請指出錯誤在第幾步,并寫出完整、正確的解答過程.
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,一次函數y=kx+b的圖象經過點A(﹣2,6),且與x軸相交于點B,與正比例函數y=3x的圖象相交于點C,點C的橫坐標為1.
(1)求k、b的值;
(2)若點D在y軸負半軸上,且滿足S△COD=S△BOC,求點D的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】△ABC在平面直角坐標系中的位置如圖所示.
(1)分別寫出下列三點坐標:A ,B ,C ;
(2)將△ABC平移至△OB′C′位置,使點A與原點O重合,畫出平移后的△OB′C′,寫出B′、C′的坐標;
(3)求△OB′C′的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在數軸上點A表示-3,點B表示4.
(1)點A與點B之間的距離是 ;
(2)我們知道,在數軸上|a|表示數a所對應的點到原點的距離,你能說明在數軸上表示的意義嗎?
(3)在數軸上點P表示的數為x,是否存在這樣的點P,使2PA+PB=12?若存在,請求出相應的x;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在等邊△ABC的頂點A、C處各有一只蝸牛,它們同時出發(fā),分別以每分鐘1米的速度由A向B和由C向A爬行,其中一只蝸牛爬到終點時,另一只也停止運動,經過t分鐘后,它們分別爬行到D、E處,請問:
(1)如圖1,在爬行過程中,CD和BE始終相等嗎?
(2)如果將原題中的“由A向B和由C向A爬行”,改為“沿著AB和CA的延長線爬行”,EB與CD交于點Q,其他條件不變,蝸牛爬行過程中∠CQE的大小保持不變,請利用圖2說明:∠CQE=60°;
(3)如果將原題中“由C向A爬行”改為“沿著BC的延長線爬行,連接DE交AC于F”,其他條件不變,如圖3,則爬行過程中,DF始終等于EF是否正確?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】數學活動
問題情境:
如圖1,在ABC中,AB=AC,∠BAC=90°,D,E分別是邊AB,AC的中點,將ADE繞點A順時針旋轉α角(0°<α<90°)得到AD′E′,連接CE′,BD′.探究CE′與BD′的數量關系;
圖1 圖2 圖3 圖4
探究發(fā)現:
(1)圖1中,CE′與BD′的數量關系是________;
(2)如圖2,若將問題中的條件“D,E分別是邊AB,AC的中點”改為“D為AB邊上任意一點,DE∥BC交AC于點E”,其他條件不變,(1)中CE′與BD′的數量關系還成立嗎?請說明理由;
拓展延伸:
(3)如圖3,在(2)的條件下,連接BE′,CD′,分別取BC,CD′,E′D′,BE′的中點F,G,H,I,順次連接F,G,H,I得到四邊形FGHI.請判斷四邊形FGHI的形狀,并說明理由;
(4)如圖4,在ABC中,AB=AC,∠BAC=60°,點D,E分別在AB,AC上,且DE∥BC,將ADE繞點A順時針旋轉60°得到AD′E′,連接CE′,BD′.請你仔細觀察,提出一個你最關心的數學問題(例如:CE′與BD′相等嗎?).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知,
,
,……
(1)依據上述規(guī)律,請寫出=__________=______
(2)當n為正整數時(n≥2),=_________________=_____________
(3)計算的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com