【題目】如圖,在平面直角坐標(biāo)系中,正方形ABCD頂點(diǎn)A的坐標(biāo)為(0,4),B點(diǎn)在x軸上,對(duì)角線AC,BD交于點(diǎn)MOM=6,則點(diǎn)C的坐標(biāo)為_____

【答案】(12,8)

【解析】

過點(diǎn)CCEx軸于點(diǎn)E,過點(diǎn)MMFx軸于點(diǎn)F,連結(jié)EM,根據(jù)正方形的性質(zhì)可以得出FOE的中點(diǎn),就可以得出MF是梯形AOEC的中位線,證明AOB≌△BEC就可以得出OB=CEAO=BE,就可以求得OME是等腰直角三角形,由勾股定理就可以求出OE的值,從而得出C點(diǎn)的縱坐標(biāo).

過點(diǎn)CCEx軸于點(diǎn)E,過點(diǎn)MMFx軸于點(diǎn)F,連結(jié)EM,

∴∠MFO=CEO=AOB=90,AOMFCE

∵四邊形ABCD是正方形,

AB=BC,ABC=90,AM=CM,

∴∠OAB=EBC,OF=EF,

MF是梯形AOEC的中位線,

MF=(AO+EC),

MFOE,

MO=ME.

∵在AOBBEC中,

AOBBEC(AAS),

OB=CEAO=BE.

MF= (BE+OB),

又∵OF=FE

MOE是直角三角形,

MO=ME,

MOE是等腰直角三角形,

A(0,4),

OA=4,

BE=4

OB=CE=8

C(12,8).

故答案為:(12,8).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)P為定角∠AOB的平分線上的一個(gè)定點(diǎn),且∠MPN∠AOB互補(bǔ),若∠MPN在繞點(diǎn)P旋轉(zhuǎn)的過程中,其兩邊分別與OA、OB相交于MN兩點(diǎn),則以下結(jié)論:(1PM=PN恒成立;(2OM+ON的值不變;(3)四邊形PMON的面積不變;(4MN的長(zhǎng)不變,其中正確的個(gè)數(shù)為( 。

A. 4B. 3C. 2D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的中線,點(diǎn)的延長(zhǎng)線上的點(diǎn),連接,且,過點(diǎn)于點(diǎn),連接,若,則的長(zhǎng)為________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰直角ABC,ABC=90°點(diǎn)PAC,ABP繞頂點(diǎn)B沿順時(shí)針方向旋轉(zhuǎn)90°后得到CBQ.

(1)求∠PCQ的度數(shù);

(2)當(dāng)AB=4APBP=13時(shí),PQ的長(zhǎng);

(3)當(dāng)點(diǎn)P在線段AC上運(yùn)動(dòng)時(shí)(P不與A、C重合),請(qǐng)寫出一個(gè)反映PA2、PC2PB2之間關(guān)系的等式,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,四邊形ABCD是平行四邊形,按下列條件得到的四邊形BFDE是平行四邊形的個(gè)數(shù)是( 。

①圖甲,DEAC,BFAC ②圖乙,DE平分∠ADC,BF平分∠ABC

③圖丙,EAB的中點(diǎn),FCD的中點(diǎn) ④圖丁,EAB上一點(diǎn),EFAB

A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC的三個(gè)頂點(diǎn)坐標(biāo)為A(﹣2,3),B(﹣6,0),C(﹣1,0).

1)將ABC繞坐標(biāo)原點(diǎn)O旋轉(zhuǎn)180°,畫出圖形,并寫出點(diǎn)A的對(duì)應(yīng)點(diǎn)A′的坐標(biāo)_____;

2)將ABC繞坐標(biāo)原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,直接寫出點(diǎn)A的對(duì)應(yīng)點(diǎn)A″的坐標(biāo)_____;

3)請(qǐng)直接寫出:以A、B、C為頂點(diǎn)的平行四邊形的第四個(gè)頂點(diǎn)D所有可能的坐標(biāo)_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知、、在同一條直線上,,,則下列條件中,不能判斷的是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=ax2+bx2a≠0)與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),直線BD交拋物線于點(diǎn)D,并且D2,3),tanDBA=

1)求拋物線的解析式;

2)已知點(diǎn)M為拋物線上一動(dòng)點(diǎn),且在第三象限,順次連接點(diǎn)B、M、C、A,求四邊形BMCA面積的最大值;

3)在(2)中四邊形BMCA面積最大的條件下,過點(diǎn)M作直線平行于y軸,在這條直線上是否存在一個(gè)以Q點(diǎn)為圓心,OQ為半徑且與直線AC相切的圓?若存在,求出圓心Q的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=kx+b經(jīng)過點(diǎn)A-50),B-1,4

1)求直線AB的表達(dá)式;

2)求直線CEy=-2x-4與直線ABy軸圍成圖形的面積;

3)根據(jù)圖象,直接寫出關(guān)于x的不等式kx+b-2x-4的解集.

查看答案和解析>>

同步練習(xí)冊(cè)答案