【題目】已知四邊形ABCD是菱形,AC、BD交于點E,點F在CB的延長線上,連結(jié)EF交AB于H,以EF為直徑作⊙O,交直線AD于A、G兩點,交BC于K點.
(1)如圖1,連結(jié)AF,求證:四邊形AFBD是平行四邊形;
(2)如圖2,當∠ABC=90°時,求tan∠EFC的值;
(3)如圖3,在(2)的條件下,連結(jié)OG,點P在弧FG上,過點P作PT∥OF交OG于T,PR∥OG交OF于R點,連結(jié)TR,若AG=2,在點P運動過程中,探究線段TR的長是否為定值,如果是,則求出這個定值;如果不是,請說明理由.
【答案】(1)詳見解析;(2);(3)
【解析】
(1)連接AF,由EF是⊙O的直徑知FA⊥AC,由四邊形ABCD是菱形知BD⊥AC、AD∥FB,據(jù)此可得FA∥BD,即可得證;
(2)連接EK,先證四邊形ABCD是正方形,由EF是⊙O的直徑知FK⊥EK,設(shè)BK=EK=a,則BC=AD=FB=2a,根據(jù)tan∠EFC=可得答案;
(3)連接OP、FA,過點O作OM⊥GD,并延長MO交FC于點N,先證四邊形PROT是矩形得RT=OP=OG,由MN⊥FC知tan∠EFC=tan∠GOM=,由AG=2、OM⊥GD知GM=1、OM=3,由勾股定理可得GO=,繼而可得答案.
(1)如圖1,連接AF,
∵EF是⊙O的直徑,
∴∠FAC=90°,即FA⊥AC,
∵四邊形ABCD是菱形,
∴BD⊥AC,AD∥BC、即AD∥FB,
∴FA∥BD,
∴四邊形AFBD是平行四邊形;
(2)如圖2,連接EK,
∵∠ABC=90°,四邊形ABCD是菱形,
∴四邊形ABCD是正方形,
∵EF是⊙O的直徑,
∴FK⊥EK,
設(shè)BK=EK=a,則BC=AD=FB=2a,
則tan∠EFC==;
(3)TR的長是定值,
如圖3,連接OP、FA,過點O作OM⊥GD,并延長MO交FC于點N,
∵EF是⊙O的直徑,
∴FA⊥EA,
又∵四邊形ABCD是正方形,
∴∠BAC=45°,
∴∠GAF=45°,
∴∠GOF=90°,
∵PT∥OF、PR∥OG,
∴四邊形PROT是矩形,
∴RT=OP=OG,
∵OM⊥GD、GD∥FC,
∴MN⊥FC,
∴tan∠EFC=tan∠GOM=,
∵AG=2、OM⊥GD,
∴GM=1,
∴OM=3,
由勾股定理可得GO=,
∴RT=.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線與軸交于點,,與直線交于點,直線與軸交于點.
(1)求該拋物線的解析式.
(2)點是拋物線上第四象限上的一個動點,連接,,當的面積最大時,求點的坐標.
(3)將拋物線的對稱軸向左平移3個長度單位得到直線,點是直線上一點,連接,,若直線上存在使最大的點,請直接寫出滿足條件的點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(本題8分)已知:關(guān)于的方程.
(1)求證:方程總有兩個實數(shù)根;
(2)如果為正整數(shù),且方程的兩個根均為整數(shù),求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了解某校九年級男生200米跑的水平,從中隨機抽取部分男生進行測試,并把測試成績分為D、C、B、A四個等次繪制成如圖所示的不完整的統(tǒng)計圖,請你依圖解答下列問題:
(1)a= ,b= ,c= ;
(2)扇形統(tǒng)計圖中表示C等次的扇形所對的圓心角的度數(shù)為 度;
(3)學校決定從A等次的甲、乙、丙、丁四名男生中,隨機選取兩名男生參加全市中學生200米跑比賽,請用列表法或畫樹狀圖法,求甲、乙兩名男生同時被選中的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,AE是BC邊上的高線,BM平分∠ABC交AE于點M,經(jīng)過B,M 兩點的⊙O交BC于點G,交AB于點F ,F(xiàn)B為⊙O的直徑.
(1)求證:AM是⊙O的切線
(2)當BE=3,cosC=時,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,E是AB的中點,連接DE、CE.
(1)求證:△ADE≌△BCE;
(2)若AB=6,AD=4,求△CDE的周長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,AB=AC,CO的延長線交AB于點D.
(1)求證:AO平分∠BAC;
(2)若BC=6,sin∠BAC=,求AC和CD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小帥家的新房子剛裝修完,便遇到罕見的大雨,于是他向爸爸提議給窗戶安上遮雨罩.如圖1所示的是他了解的一款雨罩.它的側(cè)面如圖2所示,其中頂部圓弧AB的圓心O在整直邊緣D上,另一條圓弧BC的圓心O.在水平邊緣DC的廷長線上,其圓心角為90°,BE⊥AD于點E,則根據(jù)所標示的尺寸(單位:c)可求出弧AB所在圓的半徑AO的長度為_____cm.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為增強學生體質(zhì),各學校普遍開展了陽光體育活動,某校為了解全校1000名學生每周課外體育活動時間的情況,隨機調(diào)查了其中的50名學生,對這50名學生每周課外體育活動時間x(單位:小時)進行了統(tǒng)計.根據(jù)所得數(shù)據(jù)繪制了一幅不完整的統(tǒng)計圖,并知道每周課外體育活動時間在6≤x<8小時的學生人數(shù)占24%.根據(jù)以上信息及統(tǒng)計圖解答下列問題:
(1)本次調(diào)查屬于 調(diào)查,樣本容量是 ;
(2)請補全頻數(shù)分布直方圖中空缺的部分;
(3)求這50名學生每周課外體育活動時間的平均數(shù);
(4)估計全校學生每周課外體育活動時間不少于6小時的人數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com