【題目】閱讀下面的材料,解答問題:為解方(x2﹣1)2﹣5(x2﹣1)+6=0.我們可以將(x2﹣1)看作一個整體,然后x2﹣1=y,那么原方程可化為y2﹣5y+6=0,解得y1=2,y2=3.
當(dāng)y=2時,x2﹣1=2,x2=3,x=±;
當(dāng)y=3時,x2﹣1=3,x2=4,x=±2.
當(dāng)原方程的解為x1=, x2=﹣, x3=2,x4=﹣2.
上述解題方法叫做“換元法”;請利用“換元法”解方程.(x2+x)2﹣4(x2+x)﹣12=0.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,AB=AC,把△ABC繞A點沿順時針方向旋轉(zhuǎn)得到△ADE,聯(lián)結(jié)BD與CE交于點F,BD交AE于點G.
(1)求證:△AEC≌△ADB ;
(2)若AB=2,∠ACB=67.5°,AC∥DF ,求BD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,二次函數(shù)y=﹣+bx+c的圖象經(jīng)過點A(1,0),且當(dāng)x=0和x=5時所對應(yīng)的函數(shù)值相等.一次函數(shù)y=﹣x+3與二次函數(shù)y=﹣+bx+c的圖象分別交于B,C兩點,點B在第一象限.
(1)求二次函數(shù)y=﹣+bx+c的表達式;
(2)連接AB,求AB的長;
(3)連接AC,M是線段AC的中點,將點B繞點M旋轉(zhuǎn)180°得到點N,連接AN,CN,判斷四邊形ABCN的形狀,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是正方形,BE⊥EF,DF⊥EF,BE=2.5cm,DF=4cm,那么EF的長為( )
A. 6.5cm B. 6cm C. 5.5cm D. 4cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,點E、F、G、H分別是邊AB、BC、CD和DA的中點,連接EF、FG、GH和HE.若EH=2EF,則下列結(jié)論正確的是
A. AB=EF B. AB=2EF C. AB=EF D. AB=EF
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c的圖象的一部分,對稱軸是直線x=1.①b2>4ac; ②b<0;③y隨x的增大而減小; ④若(﹣2,y1),(5,y2)是拋物線上的兩點,則y1<y2.上述4個判斷中,正確的是( )
A. ①②④ B. ①④ C. ①③④ D. ②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD的對角線相交于點0,AC=2,BD=.將菱形按如圖方式折疊,使點B與點O重合,折痕為EF,則五邊形AEFCD的面積是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與實踐:
如圖1,已知△ABC為等邊三角形,點D,E分別在邊AB、AC上,AD=AE,連接DC,點M,P,N分別為DE,DC,BC的中點.
(1)觀察猜想:在圖1中,線段PM與PN的數(shù)量關(guān)系是 ,∠MPN的度數(shù)是 ;
(2)探究證明:把△ADE繞點A逆時針方向旋轉(zhuǎn)到圖2的位置,
①判斷△PMN的形狀,并說明理由;
②求∠MPN的度數(shù);
(3)拓展延伸:若△ABC為直角三角形,∠BAC=90°,AB=AC=10,點DE分別在邊AB,AC上,AD=AE=4,連接DC,點M,P,N分別為DE,DC,BC的中點.把△ADE繞點A在平面內(nèi)自由旋轉(zhuǎn),如圖3,請直接寫出△PMN面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,E、F是對角線BD上兩點,且∠EAF=45°,將△ADF繞點A順時針旋轉(zhuǎn)90°后,得到△ABQ,連接EQ,求證:
(1)EA是∠QED的平分線;
(2)EF2=BE2+DF2.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com