【題目】如圖,在ABC中,BD、CE分別是∠ABC和∠ACB的平分線,AMCEP,交BCM,ANBDQ,交BCN,∠BAC=110°,AB=6AC=5,MN=2,結(jié)論①AP=MP;②BC=9;③∠MAN=35°;④AM=AN.其中不正確的有(

A.4B.3C.2D.1

【答案】D

【解析】

利用三角形的角平分線的性質(zhì)得出角相等,通過證明三角形全等得出邊相等即可判斷①②的對錯,利用三角形內(nèi)角和等于180°、三角形外角和以及等角替換證明③④的對錯即可.

解: CE∠ACB的平分線且AM⊥CE

∴CM=AC

MCPAPC

∴MCPAPC

同理可證ABQBNQ

∴AM=AP(故正確),BN=AB

∴BC=BN+CN-MN=AB+AC-MN=6+5-2=9(故正確)

根據(jù)題意有

=

=75°

,正確

根據(jù)上述可知 ∴AM≠AN,故錯誤

故選D.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,AC=BC=6cm,點P 從點A 出發(fā),沿AB方向以每秒cm的速度向終點B運動;同時,動點Q從點B出發(fā)沿BC方向以每秒1cm 的速度向終點C運動,將△PQC沿BC翻折,點P的對應點為點P′.設(shè)Q點運動的時間 t 秒,若四邊形QPCP′為菱形,則 t 的值為(

A. B. 2 C. 2 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC三個頂點的坐標分別為A1,1),B42),C34).

1)請畫出△ABC向左平移5個單位長度后得到的△A1B1C1;

2)請畫出△ABC關(guān)于原點對稱的△A2B2C2

3)在x軸上求作一點P,使△PAB的周長最小,請畫出△PAB,并直接寫出P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算

1

2

3)先化簡再求值:;,其中

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某駐村扶貧小組為解決當?shù)刎毨栴},帶領(lǐng)大家致富.經(jīng)過調(diào)查研究,他們決定利用當?shù)厣a(chǎn)的甲乙兩種原料開發(fā)A,B兩種商品,為科學決策,他們試生產(chǎn)A、B兩種商品100千克進行深入研究,已知現(xiàn)有甲種原料293千克,乙種原料314千克,生產(chǎn)1千克A商品,1千克B商品所需要的甲、乙兩種原料及生產(chǎn)成本如下表所示.

甲種原料(單位:千克)

乙種原料(單位:千克)

生產(chǎn)成本(單位:元)

A商品

3

2

120

B商品

2.5

3.5

200

設(shè)生產(chǎn)A種商品x千克,生產(chǎn)A、B兩種商品共100千克的總成本為y元,根據(jù)上述信息,解答下列問題:

(1)求yx的函數(shù)解析式(也稱關(guān)系式),并直接寫出x的取值范圍;

(2)x取何值時,總成本y最。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,CD是經(jīng)過∠BCA頂點C的一條直線,且直線CD經(jīng)過∠BCA的內(nèi)部,點E,F在射線CD上,已知CA=CB且∠BEC=CFA=α

1)如圖1,若∠BCA=80°,∠α=90°,問EF=BE-AF,成立嗎?說明理由.

2)將(1)中的已知條件改成∠BCA=β,∠α+β=180°(如圖2),問EF=BE-AF仍成立嗎?說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①、②、③、○n、…、M、N分別是⊙O的內(nèi)接正三角形ABC、正方形ABCD、正五邊形ABCDE、…、正n邊形ABCDE…的邊AB、BC上的點,且BM=CN,連接OM、ON.

(1)求圖①中∠MON的度數(shù);

(2)圖②中∠MON的度數(shù)是_________,圖③中∠MON的度數(shù)是___________;

(3)試探究∠MON的度數(shù)與正n邊形邊數(shù)n的關(guān)系(直接寫出答案).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知正方形 ABOC 的頂點 B(2,1), 則頂點 C 的坐標 _____ .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形中,從點出發(fā)以的速度沿向點勻速移動,點從點出發(fā)以的速度沿向點勻速移動,點從點出發(fā)以的速度沿向點勻速移動.點同時出發(fā),當其中一個點到達終點時,其他兩個點也隨之停止運動,設(shè)移動時間為

1)如圖①,

①當為何值時,點為頂點的三角形與全等?并求出相應的的值;

②連接交于點,當時,求出的值;

2)如圖②,連接交于點.當時,證明:

查看答案和解析>>

同步練習冊答案