【題目】如圖,直線AB與CD相交于點O,∠AOC=50°,OE平分∠AOD,OF平分∠BOD.
(1)填空:∠BOD= 度;
(2)試說明OE⊥OF.
【答案】(1)50;(2)先根據(jù)平角的定義求得∠AOD的度數(shù),再根據(jù)角平分線的性質(zhì)求得∠EOD、∠DOF的度數(shù),從而得到結(jié)果.
【解析】
試題(1)根據(jù)對角線相等即可得到結(jié)果;
(2)先根據(jù)平角的定義求得∠AOD的度數(shù),再根據(jù)角平分線的性質(zhì)求得∠EOD、∠DOF的度數(shù),從而得到結(jié)果.
(1)由圖可得∠BOD=∠AOC=50°;
(2)∵∠AOC=50°,
∴∠AOD=180°-∠AOC =180°-50°=130°,
∵OE平分∠AOD,OF平分∠BOD
∴∠EOD=∠AOD==65°,∠DOF=∠BOD==25°,
∴∠EOF=∠EOD+∠DOF=65°+25°=90°,
∴OE⊥OF.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個大燒杯中裝有一個小燒杯,在小燒杯中放入一個浮子(質(zhì)量非常輕的空心小圓球)后再往小燒杯中注水,水流的速度恒定不變,小燒杯被注滿后水溢出到大燒杯中,浮子始終保持在容器的正中間.用x表示注水時間,用y表示浮子的高度,則用來表示y與x之間關(guān)系的選項是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是一條直線,OC是∠AOD的平分線,OE在∠BOD內(nèi),∠DOE=∠BOD,∠COE=72°,則∠EOB=( )
A. 36° B. 72°
C. 108° D. 120°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,四邊形ABCD、CEFG均為正方形.
(1)求證:BE=DG.
(2)如圖②,四邊形ABCD、CEFG均為菱形,且∠A=∠F.是否仍存在結(jié)論BE=DG,若不存在,請說明理由;若存在,給出證明.
(3)如圖③,四邊形ABCD、CEFG均為菱形,點E在邊AD上,點G在AD延長線上.若AE=2ED,∠A=∠F,△EBC的面積為8,則菱形CEFG的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,對角線AC和BD相交于點O,在AB上有一點E,連接CE,過點B作BC的垂線和CE的延長線交于點F,連接AF,∠ABF=∠FCB,F(xiàn)C=AB,若FB=1,AF=,則BD=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列圖形是將正三角形按一定規(guī)律排列,則第4個圖形中所有正三角形的個數(shù)有( )
A.160
B.161
C.162
D.163
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A、B表示的數(shù)分別是a、b,點A在0和1對應(yīng)的兩點(不包括這兩點)之間移動,點B在﹣3,﹣2對應(yīng)的兩點之間移動,下列四個代數(shù)式的值可能比2018大的是( 。
A. B. b﹣a C. (a﹣b)2 D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】網(wǎng)癮低齡化問題已經(jīng)引起社會各界的高度關(guān)注,有關(guān)部門在全國范圍內(nèi)對12﹣35歲的網(wǎng)癮人群進行了簡單的隨機抽樣調(diào)查,繪制出以下兩幅統(tǒng)計圖.
請根據(jù)圖中的信息,回答下列問題:
(1)這次抽樣調(diào)查中共調(diào)查了 人;
(2)請補全條形統(tǒng)計圖;
(3)扇形統(tǒng)計圖中18﹣23歲部分的圓心角的度數(shù)是 ;
(4)據(jù)報道,目前我國12﹣35歲網(wǎng)癮人數(shù)約為2000萬,請估計其中12﹣23歲的人數(shù)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com