【題目】(10分)感知:如圖①,在四邊形ABCD中,AB∥CD,∠B=90°,點(diǎn)P在BC邊上,當(dāng)∠APD=90°時(shí),易證△ABP∽△PCD,從而得到BPPC=ABCD(不需證明)
探究:如圖②,在四邊形ABCD中,點(diǎn)P在BC邊上,當(dāng)∠B=∠C=∠APD時(shí),結(jié)論BPPC=ABCD仍成立嗎?請(qǐng)說明理由?
拓展:如圖③,在△ABC中,點(diǎn)P是BC的中點(diǎn),點(diǎn)D、E分別在邊AB、AC上.若∠B=∠C=∠DPE=45°,BC=4 ,CE=3,則DE的長(zhǎng)為 .
【答案】探究:成立;拓展: .
【解析】試題分析:探究:通過相似三角形△ABP∽△PCD的對(duì)應(yīng)邊成比例來證得BPPC=ABCD;
拓展:利用相似三角形△BDP∽△CPE得出比例式求出BD,三角形內(nèi)角和定理證得AC⊥BC且AC=BC;然后在直角△ABC中由勾股定理求得AC=BC=4;最后利用在直角△ADE中利用勾股定理來求DE的長(zhǎng)度.
試題解析:探究,成立,∵∠APC=∠BAP+∠B,∠APC=∠APD+∠CPD,∴∠BAP+∠B=∠APD+∠CPD.
∵∠B=∠APD,∴∠BAP=∠CPD.
∵∠B=∠C,∴△ABP∽△PCD,∴ ,即BPPC=ABCD;
拓展:同理可得△BDP∽△CPE,∴ ,∵點(diǎn)P是邊BC的中點(diǎn),∴BP=CP=,∵CE=3,∴,∴BD=,∵∠B=∠C=45°,∴∠A=180°﹣∠B﹣∠C=90°,即AC⊥BC且AC=BC=4,∴AD=AB﹣BD=,AE=AC﹣CE=1,在Rt△ADE中,DE==.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】【感知】如圖①,在Rt△ABC中,∠C=90°,AC=BC,點(diǎn)D、E分別在邊AC、BC上,且DE∥AB,易證AD=BE(不需要證明).
【探究】連結(jié)圖①中的AE,點(diǎn)M、N、P分別為DE、AE、AB的中點(diǎn),順次連結(jié)M、N、P,其它條件不變,如圖②,求證:△MNP是等腰直角三角形.
【應(yīng)用】將圖②中的點(diǎn)D、E分別移動(dòng)到AC、BC的延長(zhǎng)線上,其它條件不變,在連結(jié)BD,并取其中點(diǎn)Q,順次連結(jié)M、N、P、Q,如圖③,若=,且DE=,則四邊形MNPQ的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法:(1)三角形具有穩(wěn)定性;(2)有兩邊和一個(gè)角分別相等的兩個(gè)三角形全等(3)三角形的外角和是180°(4)全等三角形的面積相等.其中正確的個(gè)數(shù)是 ( ).
A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分9分)
已知關(guān)于x的一元二次方程x2–(m–3)x–m=0,
(1)求證:方程有兩個(gè)不相等的實(shí)數(shù)根;
(2)如果方程的兩實(shí)根分別為x1、x2,且x12+x22–x1x2=7,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“一個(gè)數(shù)比它的相反數(shù)大-4”,若設(shè)這數(shù)是x,則可列出關(guān)于x的方程為( ).
A.x=-x+4
B.x=-x+(-4)
C.x=-x-(-4)
D.x-(-x)=4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在鈍角三角形ABC中,AB=6cm,AC=12cm,動(dòng)點(diǎn)D從A點(diǎn)出發(fā)到B點(diǎn)止,動(dòng)點(diǎn)E從C點(diǎn)出發(fā)到A點(diǎn)止.點(diǎn)D運(yùn)動(dòng)的速度為1cm/秒,點(diǎn)E運(yùn)動(dòng)的速度為2cm/秒.如果兩點(diǎn)同時(shí)運(yùn)動(dòng),那么當(dāng)以點(diǎn)A、D、E為頂點(diǎn)的三角形與△ABC相似時(shí),運(yùn)動(dòng)的時(shí)間是( )
A. 4.5秒 B. 3秒 C. 3秒或4.8秒 D. 4.5秒或4.8秒
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若一個(gè)三角形三個(gè)內(nèi)角的度數(shù)之比為1:2:3,則這個(gè)三角形是( )
A.銳角三角形
B.等邊三角形
C.鈍角三角形
D.直角三角形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程x2-(m+2)x+(2m-1)=0.
(1)求證:方程恒有兩個(gè)不相等的實(shí)數(shù)根;
(2)若此方程的一個(gè)根是1,請(qǐng)求出方程的另一個(gè)根,并求出以此兩根為邊長(zhǎng)的直角三角形的周長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com