【題目】如圖,正方形ABCD的邊長(zhǎng)為1,AC,BD是對(duì)角線(xiàn),將△DCB繞著點(diǎn)D順時(shí)針旋轉(zhuǎn)45°得到△DGH,HGAB于點(diǎn)E,連接DEAC于點(diǎn)F,連接FG.則下列結(jié)論:

①四邊形AEGF是菱形;②△HED的面積是1﹣;③∠AFG=112.5°;BC+FG=.其中正確的結(jié)論是(  )

A. ①②③ B. ①②④ C. ①③④ D. ②③④

【答案】B

【解析】∵四邊形ABCD是正方形,

∴AD=DC=BC=AB,∠DAB=∠ADC=∠DCB=∠ABC=90°,∠ADB=∠BDC=∠CAD=∠CAB=45°,

∵△DHG是由△DBC旋轉(zhuǎn)得到,

∴DG=DC=AD,∠DGE=∠DCB=∠DAE=90°,

Rt△ADERt△GDE中,DE=DE,DA=DG,

∴△AED≌△GED,

∴∠ADE=∠EDG=22.5°,AE=EG,

∴∠AED=∠AFE=67.5°,

∴AE=AF,同理EG=GF,

∴AE=EG=GF=FA,

∴四邊形AEGF是菱形,①正確,

∴∠AFG=67.5°×2=135°,③錯(cuò)誤

根據(jù)題意可求得BD=,BG=BD-DG=BD-CD=-1,

在等腰直角三角形EGB中,可求得BE=2-,即可求AE=AB-BE=1-(2-)=-1,

所以AH=AE=-1,即可得△HED的面積是 ,②正確;

由(1)的證明過(guò)程可得GF=FA,CFD=CDF=67.5°,所以CD=CF,即可得AC=CF+AF=CD+FG=正確

綜上,正確的結(jié)論為①②④.

故選B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校七年級(jí)(1)班體育委員統(tǒng)計(jì)了全班同學(xué)60秒跳繩次數(shù),并列出了下面的不完整頻數(shù)分布表和不完整的頻數(shù)分布直方圖.根據(jù)圖表中的信息解答問(wèn)題

組別

跳繩次數(shù)

頻數(shù)

A

60≤x<80

2

B

80≤x<100

6

C

100≤x<120

18

D

120≤x<140

12

E

140≤x<160

a

F

160≤x<180

3

G

180≤x<200

1

合計(jì)

50

(1)求a的值;

(2)求跳繩次數(shù)x120≤x<180范圍內(nèi)的學(xué)生的人數(shù);

(3)補(bǔ)全頻數(shù)分布直方圖,并指出組距與組數(shù)分別是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知∠MON=30°,點(diǎn)A1,A2,A3,…在射線(xiàn)ON上,點(diǎn)B1,B2,B3,…在射線(xiàn)OM上,△A1B1A2,△A2B2A3,△A3B3A4,…均為等邊三角形,若OA2=4,則△AnBnAn+1的邊長(zhǎng)為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)y=x2+bx﹣的圖象與x軸交于點(diǎn)A(﹣3,0)和點(diǎn)B,以AB為邊在x軸上方作正方形ABCD,點(diǎn)P是x軸上一動(dòng)點(diǎn),連接DP,過(guò)點(diǎn)P作DP的垂線(xiàn)與y軸交于點(diǎn)E.

(1)b的值及點(diǎn)D的坐標(biāo)。
(2)線(xiàn)段AO上是否存在點(diǎn)P(點(diǎn)P不與A、O重合),使得OE的長(zhǎng)為1;
(3)在x軸負(fù)半軸上是否存在這樣的點(diǎn)P,使△PED是等腰三角形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo)及此時(shí)△PED與正方形ABCD重疊部分的面積;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,其對(duì)稱(chēng)軸為直線(xiàn)x=﹣1,給出下列結(jié)論:(1)b2>4ac; (2)abc>0;(3)2a+b=0;(4)a+b+c>0;(5)a﹣b+c<0.其中正確的結(jié)論有(  )

A.2個(gè)
B.3個(gè)
C.4個(gè)
D.5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,小平為了測(cè)量學(xué)校教學(xué)樓的高度,她先在A處利用測(cè)角儀測(cè)得樓頂C的仰角為30°,再向樓的方向直行50米到達(dá)B處,又測(cè)得樓頂C的仰角為60度.已知測(cè)角儀的高度是1.2米,請(qǐng)你幫助小平計(jì)算出學(xué)校教學(xué)樓的高度CO.(

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:AB是⊙O的直徑,DA、DC分別是⊙O的切線(xiàn),點(diǎn)A、C是切點(diǎn),連接DO交弧AC于點(diǎn)E,連接AE、CE.

(1)如圖1,求證:EA=EC;
(2)如圖2,延長(zhǎng)DO交⊙O于點(diǎn)F,連接CF、BE交于點(diǎn)G,求證:∠CGE=2∠F;
(3)如圖3,在(2)的條件下,DE=AD,EF=2 , 求線(xiàn)段CG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】列方程或方程組解應(yīng)用題:

為了響應(yīng)“十三五”規(guī)劃中提出的綠色環(huán)保的倡議,某校文印室提出了每個(gè)人都踐行“雙面打印,節(jié)約用紙”.已知打印一份資料,如果用A4厚型紙單面打印,總質(zhì)量為400克,將其全部改成雙面打印,用紙將減少一半;如果用A4薄型紙雙面打印,這份資料的總質(zhì)量為160克,已知每頁(yè)薄型紙比厚型紙輕0.8克,求A4薄型紙每頁(yè)的質(zhì)量.(墨的質(zhì)量忽略不計(jì))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)如圖1,O是等邊△ABC內(nèi)一點(diǎn),連接OA、OB、OC,且OA=3,OB=4,OC=5,將△BAO繞點(diǎn)B順時(shí)針旋轉(zhuǎn)后得到△BCD,連接OD.求:

旋轉(zhuǎn)角是____;

線(xiàn)段OD的長(zhǎng)為_____;

③求∠BDC的度數(shù).

(2)如圖2所示,O是等腰直角△ABC(∠ABC=90°)內(nèi)一點(diǎn),連接OA、OB、OC,∠A0B=135,OA=1,0B=2,求0C的長(zhǎng).

小明同學(xué)借用了圖1的方法,將△BAO繞點(diǎn)B順時(shí)針旋轉(zhuǎn)后得到△BCD,請(qǐng)你繼續(xù)用小明的思路解答,或是選擇自己的方法求解.

查看答案和解析>>

同步練習(xí)冊(cè)答案