【題目】如圖,已知正方形ABCD的邊長為1,連接AC、BD,CE平分∠ACD交BD于點(diǎn)E,則DE=

【答案】
﹣1
【解析】解:過E作EF⊥DC于F,

∵四邊形ABCD是正方形,
∴AC⊥BD,
∵CE平分∠ACD交BD于點(diǎn)E,
∴EO=EF,
在Rt△COE和Rt△CFE中
,
∴Rt△COE≌Rt△CFE(HL),
∴CO=FC,
∵正方形ABCD的邊長為1,
∴AC=
∴CO= AC= ,
∴CF=CO=
∴EF=DF=DC﹣CF=1﹣ ,
∴DE= = ﹣1,
另法:因?yàn)樗倪呅蜛BCD是正方形,
∴∠ACB=45°=∠DBC=∠DAC,
∵CE平分∠ACD交BD于點(diǎn)E,
∴∠ACE=∠DCE=22.5°,
∴∠BCE=45°+22.5°=67.5°,
∵∠CBE=45°,
∴∠BEC=67.5°,
∴BE=BC,
∵正方形ABCD的邊長為1,
∴BC=1,
∴BE=1,
∵正方形ABCD的邊長為1,
∴AC= ,
∴DE= ﹣1,
故答案為: ﹣1.
過E作EF⊥DC于F,根據(jù)正方形的性質(zhì)和角平分線的性質(zhì)以及勾股定理即可求出DE的長.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,反比例函數(shù)的圖象和矩形ABCD在第一象限,AD平行于軸,且AB=2,AD=4,點(diǎn)A的坐標(biāo)為(26).

1)直接寫出B、C、D三點(diǎn)的坐標(biāo).

2)若將矩形向下平移,矩形的兩個(gè)頂點(diǎn)恰好同時(shí)落在反比例函數(shù)的圖象上,猜想這是哪兩個(gè)點(diǎn),并求矩形的平移距離和反比例函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形網(wǎng)格中,每個(gè)小正方形的邊長為1個(gè)單位長度.平面直角坐標(biāo)系xOy的原點(diǎn)O在格點(diǎn)上,x軸、y軸都在格線上.線段AB的兩個(gè)端點(diǎn)也在格點(diǎn)上.

(1)若將線段AB繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°得到線段A1B1 , 試在圖中畫出線段A1B1
(2)若線段A2B2與線段A1B1關(guān)于y軸對(duì)稱,請(qǐng)畫出線段A2B2
(3)若點(diǎn)P是此平面直角坐標(biāo)系內(nèi)的一點(diǎn),當(dāng)點(diǎn)A、B1、B2、P四邊圍成的四邊形為平行四邊形時(shí),請(qǐng)你直接寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列各式運(yùn)算正確的是( 。
A.2a2+3a2=5a4
B.(2ab22=4a2b4
C.2a6÷a3=2a2
D.(a23=a5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若點(diǎn)P1(﹣1y1),P2(﹣2y2),P31,y3)都在函數(shù)yx22x的圖象上,則下列判斷正確的是( 。

A.y2y1y3B.y1y2y3C.y1y2y3D.y2y1y3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2015年初,一列CRH5型高速車組進(jìn)行了“300000公里正線運(yùn)營考核”標(biāo)志著中國高速快車從“中國制造”到“中國創(chuàng)造”的飛躍,將300000用科學(xué)記數(shù)法表示為( 。
A.3×106
B.3×105
C.0.3×106
D.30×104

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知m2-5m-14=0,求(m-1)(2m-1-m+12+1的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將式子3﹣5﹣7寫成和的形式,正確的是(
A.3+5+7
B.﹣3+(﹣5)+(﹣7)
C.3﹣(+5)﹣(+7)
D.3+(﹣5)+(﹣7)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中有一邊長為l的正方形OABC,邊OA、OC分別在x軸、y軸上,如果以對(duì)角線OB為邊作第二個(gè)正方形OBB1C1,再以對(duì)角線OBl為邊作第三個(gè)正方形OBlB2C2,照此規(guī)律作下去,則點(diǎn)B2012的坐標(biāo)為______________.

查看答案和解析>>

同步練習(xí)冊(cè)答案