【題目】如圖,四邊形ABCD是邊長為2的正方形,以點A,B,C為圓心作圓,分別交BA,CB,DC的延長線于點E,F(xiàn),G.

(1)求點D沿三條圓弧運動到點G所經(jīng)過的路線長;

(2)判斷線段GBDF的長度關(guān)系,并說明理由.

【答案】(1)6π;(2)GB=DF,理由詳見解析.

【解析】

(1)根據(jù)弧長公式l= 計算即可;
(2)通過證明給出的條件證明△FDC≌△GBC即可得到線段GBDF的長度關(guān)系.

解:(1)∵AD=2,∠DAE=90°,
DE的長 l1= =π,

同理弧EF的長 l2= =2π,弧FG的長 l3= =3π,
所以,點D運動到點G所經(jīng)過的路線長l=l1+l2+l3=6π.
(2)GB=DF.
理由如下:延長GBDFH.
∵CD=CB,∠DCF=∠BCG,CF=CG,
∴△FDC≌△GBC.
∴GB=DF.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,BC是⊙O的直徑,D、E是⊙O上的兩點,且弧CD=DE,連接EB、DO.

(1)求證:EB∥DO;

(2)連接EC,在∠CEB的外部作∠BEA=∠C,直線EA交CB的延長線于A,求證:直線EA是⊙O的切線;

(3)若EA=2,AB=1,求⊙O的半徑長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了推動我縣三進校園活動的廣泛開展,引導學生走向操場,走到陽光下,積極參加體育鍛煉,學校準備購買一批運動鞋供學生借用,現(xiàn)從各年級隨機抽取了部分學生的鞋號,繪制了如下的統(tǒng)計圖①和圖②,請根據(jù)相關(guān)信息,解答下列問題:

(1)本次接受隨機抽樣調(diào)查的學生人數(shù)為 ,圖①中的值為 ;

(2)本次調(diào)查獲取的樣本數(shù)據(jù)的眾數(shù)為 ,中位數(shù)為 ;

(3)根據(jù)樣本數(shù)據(jù),若學校計劃購買雙運動鞋,建議購買號運動鞋 .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABCD中,∠BAD的平分線交直線BC于點E,交直線DC于點F.

(1)在圖1中證明CE=CF;

(2)若∠ABC=90°,GEF的中點(如圖2),直接寫出∠BDG的度數(shù);

(3)若∠ABC=120°,F(xiàn)G∥CE,F(xiàn)G=CE,分別連接DB、DG(如圖3),求∠BDG的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A,B在雙曲線y=(x>0)上,點C在雙曲線y=(x>0)上,若ACy軸,BCx軸,且AC=BC,則AB等于( 。

A. B. 2 C. 4 D. 3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠BAC90°,AD是高,BE是中線,CF是角平分線,CFADG,交BEH.下列結(jié)論:SABESBCE;AFG=∠AGFFAG2ACFBHCH.其中所有正確結(jié)論的序號是

A.①②③④B.①②③C.②④D.①③

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形OABC中,點O為原點,點A的坐標為(0,8),點C的坐標為(6,0).拋物線y=﹣x2+bx+c經(jīng)過點A、C,與AB交于點D.

(1)求拋物線的函數(shù)解析式;

(2)P為線段BC上一個動點(不與點C重合),點Q為線段AC上一個動點,AQ=CP,連接PQ,設(shè)CP=m,CPQ的面積為S.

①求S關(guān)于m的函數(shù)表達式;

②當S最大時,在拋物線y=﹣x2+bx+c的對稱軸l上,若存在點F,使△DFQ為直角三角形,請直接寫出所有符合條件的點F的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩人參加射擊比賽,兩人成績?nèi)鐖D所示.

1)填表:

平均數(shù)

方差

中位數(shù)

眾數(shù)

7

1

7

9

(2)只看平均數(shù)和方差,成績更好的是   .(填“甲”或“乙”)

(3)僅就折線圖上兩人射擊命中環(huán)數(shù)的走勢看,更有潛力的是   .(填“甲”或“乙”)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】把一枚六個面編號分別為1,2,3,4,5,6的質(zhì)地均勻的正方體骰子先后投擲2次,若兩個正面朝上的編號分別為m,n,則二次函數(shù)的圖象與x軸有兩個不同交點的概率是( ).

A. B. C. D.

查看答案和解析>>

同步練習冊答案