【題目】如圖,AB∥CD,直線EF分別與AB、CD交于點(diǎn)GH,GM⊥EF,HN⊥EF,交AB于點(diǎn)N,∠1=50°

1)求∠2的度數(shù);

2)試說(shuō)明HN∥GM;

3∠HNG=

【答案】150°;(2)見(jiàn)解析(340°

【解析】

試題(1)先由AB∥CD得到∠EHD=∠1=50°,然后再根據(jù)對(duì)頂角相等可得到∠2的度數(shù);

2)由GM⊥EFHN⊥EF得到∠MGH=90°,∠NHF=90°,然后可證HN∥GM;

3)先由HN⊥EF得到∠NHG=90°,然后可得∠NGH=∠1=50°,然后根據(jù)互余可計(jì)算出∠HNG=40°

試題解析:(1∵AB∥CD

∴∠EHD=∠1=50°,

∴∠2=∠EHD=50°;

2∵GM⊥EFHN⊥EF,

∴∠MGH=90°,∠NHF=90°

∴∠MGH=∠NHF,

∴HN∥GM

3∵HN⊥EF,

∴∠NHG=90°

∵∠NGH=∠1=50°,

∴∠HNG=90°﹣50°=40°

故答案為40°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知△ABC中,∠ACB=90°,AC=1,BC=2,CD平分∠ACB交邊AB與點(diǎn)D,P是射線CD上一點(diǎn),聯(lián)結(jié)AP.

(1)求線段CD的長(zhǎng);

(2)當(dāng)點(diǎn)PCD的延長(zhǎng)線上,且∠PAB=45°時(shí),求CP的長(zhǎng);

(3)記點(diǎn)M為邊AB的中點(diǎn),聯(lián)結(jié)CM、PM,若△CMP是等腰三角形,求CP的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在鈍角三角形ABC中,把AB=AC,DBC上一點(diǎn),ADABC分成兩個(gè)等腰三角形,則BAC的度數(shù)為(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示雙曲線y= 分別位于第三象限和第二象限,Ay軸上任意一點(diǎn),B上的點(diǎn),Cy=上的點(diǎn),線段BCx軸于D,4BD=3CD,則下列說(shuō)法雙曲線y=在每個(gè)象限內(nèi),yx的增大而減小②若點(diǎn)B的橫坐標(biāo)為-3,C點(diǎn)的坐標(biāo)為(-3, );k=4④△ABC的面積為定值7.正確的有

A. I個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線y=ax2+bx+3a0)經(jīng)過(guò)點(diǎn)A1,0),B,0),且與y軸相交于點(diǎn)C

(1)求這條拋物線的表達(dá)式;

(2)求∠ACB的度數(shù);

(3)設(shè)點(diǎn)D是所求拋物線第一象限上一點(diǎn),且在對(duì)稱(chēng)軸的右側(cè),點(diǎn)E在線段AC上,且DEAC,當(dāng)△DCE與△AOC相似時(shí),求點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,EBC的中點(diǎn),連接AE并延長(zhǎng)交DC的延長(zhǎng)線于點(diǎn)F.

(1)求證:AB=CF;

(2)連接DE,若AD=2AB,求證:DEAF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1所示,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y= 的圖象交A(1,4)B(-4,c)兩點(diǎn),

(1)求反比例函數(shù)及一次函數(shù)的解析式;

(2)點(diǎn)Px軸上一動(dòng)點(diǎn),使|PA-PB|的值最大,求點(diǎn)P的坐標(biāo)及PAB的面積;

(3)如圖2所示,點(diǎn)M、N都在直線AB,過(guò)M、N分別作y軸的平行線交雙曲線于EF,設(shè)M、N的橫坐標(biāo)分別為mn,, ,請(qǐng)?zhí)骄?/span>,當(dāng)m、n滿足什么關(guān)系時(shí),ME=NE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形 ABCD 中, ABC 90 CD AD , BE AD , AD2 CD2 2 AB2,若四邊形 ABCD 的面積為18,則 BE 的長(zhǎng)為_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A(11),B(1,1)C(1,﹣2),D(1,﹣2).把一條長(zhǎng)為2019個(gè)單位長(zhǎng)度且沒(méi)有彈性的細(xì)線(線的粗細(xì)忽略不計(jì))的一端固定在點(diǎn)A處,并按ABCDA的規(guī)律繞在四邊形ABCD的邊上,則細(xì)線另一端所在位置的點(diǎn)的坐標(biāo)是_____

查看答案和解析>>

同步練習(xí)冊(cè)答案