【題目】如圖,在平面直角坐標系中xOy中,拋物線y=﹣x2+bx+c與x軸相交于點A(﹣1,0)和點B,與y軸相交于點C(0,3),拋物線的頂點為點D,聯(lián)結AC,BC,DB,DC.
(1)求這條拋物線的表達式及頂點D的坐標;
(2)求證:△ACO∽△DBC;
(3)如果點E在x軸上,且在點B的右側,∠BCE=∠ACO,求點E的坐標.

【答案】
(1)解:∵拋物線y=﹣x2+bx+c經過點A(﹣1,0),點C(0,3),

解得 ,

∴拋物線的表達式為y=﹣x2+2x+3,

∴頂點D的坐標為(1,4)


(2)解:∵當y=0時,0=﹣x2+2x+3,

解得x1=﹣1,x2=3,

∴B(3,0),

又∵A(﹣1,0),D(1,4),

∴CD= ,BC=3 ,BD=2 ,AO=1,CO=3,

∴CD2+BC2=BD2,

∴△BCD是直角三角形,且∠BCD=90°,

∴∠AOC=∠DCB,

又∵ = , = ,

= ,

∴△ACO∽△DBC


(3)解:設CE與BD交于點M,

∵△ACO∽△DBC,

∴∠DBC=∠ACO,

又∵∠BCE=∠ACO,

∴∠DBC=∠BCE,

∴MC=MB,

∵△BCD是直角三角形,

∴∠BCM+∠DCM=90°=∠CBM+∠MDC,

∴∠DCM=∠CDM,

∴MC=MD,

∴DM=BM,即M是BD的中點,

∵B(3,0),D(1,4),

∴M(2,2),

設直線CE的解析式為y=kx+b,則

,

解得 ,

∴直線CE為:y=﹣ x+3,

當y=0時,0=﹣ x+3,

解得x=6,

∴點E的坐標為(6,0).


【解析】(1)根據(jù)拋物線y=﹣x2+bx+c經過點A(﹣1,0),點C(0,3),即可求得b,c的值,進而得到拋物線的表達式及頂點D的坐標;(2)先根據(jù)B(3,0),A(﹣1,0),D(1,4),求得CD= ,BC=3 ,BD=2 ,AO=1,CO=3,進而得到CD2+BC2=BD2 , 從而判定△BCD是直角三角形,且∠BCD=90°,最后根據(jù)∠AOC=∠DCB, = ,判定△ACO∽△DBC;(3)先設CE與BD交于點M,根據(jù)MC=MB,得出M是BD的中點,再根據(jù)B(3,0),D(1,4),得到M(2,2),最后根據(jù)待定系數(shù)法求得直線CE的解析式,即可得到點E的坐標.
【考點精析】認真審題,首先需要了解勾股定理的逆定理(如果三角形的三邊長a、b、c有下面關系:a2+b2=c2,那么這個三角形是直角三角形),還要掌握相似三角形的判定(相似三角形的判定方法:兩角對應相等,兩三角形相似(ASA);直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似; 兩邊對應成比例且夾角相等,兩三角形相似(SAS);三邊對應成比例,兩三角形相似(SSS))的相關知識才是答題的關鍵.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x2﹣x,g(x)=ex﹣ax﹣1(e為自然對數(shù)的底數(shù)).
(1)討論函數(shù)g(x)的單調性;
(2)當x>0時,f(x)≤g(x)恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,如果∠ADC=∠BAC,那么下列條件中不能判定△ADC和△BAC相似的是(
A.∠DAC=∠ABC
B.AC是∠BCD的平分線
C.AC2=BC?CD
D. =

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一張直角三角形紙片ABC,∠C=90°,AB=24,tanB= (如圖),將它折疊使直角頂點C與斜邊AB的中點重合,那么折痕的長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=6,AD=3,點P是邊AD上的一點,聯(lián)結BP,將△ABP沿著BP所在直線翻折得到△EBP,點A落在點E處,邊BE與邊CD相交于點G,如果CG=2DG,那么DP的長是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某教師就中學生對課外數(shù)閱讀狀況進行了一次問卷調查,并根據(jù)調查結果繪制了中學生每學期閱讀課外書籍數(shù)量的統(tǒng)計圖(不完整).設x表示閱讀書籍的數(shù)量(x為正整數(shù),單位:本),其中A:1≤x≤2;B:3≤x≤4;C:5≤x≤6;D:x≥7.請你根據(jù)兩幅圖提供的信息解答下列問題:
(1)本次共調查了多少名學生?
(2)補全條形統(tǒng)計圖,并判斷中位數(shù)在哪一組;
(3)計算扇形統(tǒng)計圖中扇形D的圓心角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】現(xiàn)有五張完全相同的卡片,某同學在其中四張的正面分別寫上了春節(jié)、清明節(jié)、端午節(jié)、重陽節(jié)這四個中國傳統(tǒng)節(jié)日,在第五張的正面寫上了國慶節(jié),然后把卡片背面朝上洗勻,從中隨機抽取一張卡片,則所抽取卡片正面所寫節(jié)日是中國傳統(tǒng)節(jié)日的概率是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解方程組
(1)解方程組:
(2)解不等式: <x.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點E是正方形ABCD的邊BC延長線上的一點,AC=CE,AE交CD于點F,則∠AFD的度數(shù)是

查看答案和解析>>

同步練習冊答案