【題目】如圖,在平行四邊形中,=45°,點(diǎn)軸上,點(diǎn)的中點(diǎn),反比例函數(shù)的圖象經(jīng)過兩點(diǎn).

1)求的值;

2)求四邊形的面積.

【答案】1k=4;(26

【解析】

1)過CCEx軸于E,則∠CEO=90°,根據(jù)∠AOC=45°可得出OE=CE,再根據(jù)勾股定理求出OE,CE,求出C的坐標(biāo),即可求出答案;
2)過點(diǎn)軸于,根據(jù)D為中點(diǎn)求出AD的長,再判斷出△ADF為等腰直角三角形,進(jìn)而求出DF的值,代入反比例函數(shù)解析式求出OF,再求出OA,根據(jù)平行四邊形的面積公式求出即可.

解:(1)過點(diǎn)軸于

,

∵反比例函數(shù)的圖象經(jīng)過點(diǎn)點(diǎn),

;

2)過點(diǎn)軸于,

∵四邊形是平行四邊形,

,

又∵點(diǎn)的中點(diǎn),

,

,

點(diǎn)的縱坐標(biāo)為

反比例函數(shù)的圖象過點(diǎn)點(diǎn),

平行四邊形的面積

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市將實(shí)行居民生活用電階梯電價(jià)方案,如下表,圖中折線反映了每戶居民每月電費(fèi)(元)與用電量(度)間的函數(shù)關(guān)系.

檔次

第一檔

第二檔

第三檔

每月用電量(度)

1)小王家某月用電度,需交電費(fèi)___________元;

2)求第二檔電費(fèi)(元)與用電量(度)之間的函數(shù)關(guān)系式;

3)小王家某月用電度,交納電費(fèi)元,請(qǐng)你求出第三檔每度電費(fèi)比第二檔每度電費(fèi)多多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),在中,,,.點(diǎn)由點(diǎn)出發(fā)沿方向向點(diǎn)勻速運(yùn)動(dòng),同時(shí)點(diǎn)由點(diǎn)出發(fā)沿方向向點(diǎn)勻速運(yùn)動(dòng),它們的速度均為.作,連接,設(shè)運(yùn)動(dòng)時(shí)間為(),解答下列問題:

1)設(shè)的面積為,求之間的函數(shù)關(guān)系式,并求出的最大值;

2)當(dāng)的值為________________時(shí),是等腰三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)圖象經(jīng)過點(diǎn)(-1,2),下列結(jié)論中正確的有(

;;;

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+c(a,b,c為常數(shù)a≠0)與x軸,y軸分別交于A,B,C三點(diǎn),已知A(-1,0),B(3,0),C(0,3),動(dòng)點(diǎn)E從拋物線的頂點(diǎn)點(diǎn)D出發(fā)沿線段DB向終點(diǎn)B運(yùn)動(dòng).
(1)直接寫出拋物線解析式和頂點(diǎn)D的坐標(biāo);
(2)過點(diǎn)E作EF⊥y軸于點(diǎn)F,交拋物線對(duì)稱軸左側(cè)的部分于點(diǎn)G,交直線BC于點(diǎn)H,過點(diǎn)H作HP⊥x軸于點(diǎn)P,連接PF,求當(dāng)線段PF最短時(shí)G點(diǎn)的坐標(biāo);
(3)在點(diǎn)E運(yùn)動(dòng)的同時(shí),另一個(gè)動(dòng)點(diǎn)Q從點(diǎn)B出發(fā)沿直線x=3向上運(yùn)動(dòng),點(diǎn)E的速度為每秒個(gè)單位長度,點(diǎn)Q速度均為每秒1個(gè)單位長度,當(dāng)點(diǎn)E到達(dá)終點(diǎn)B時(shí)點(diǎn)Q也隨之停止運(yùn)動(dòng),設(shè)點(diǎn)E的運(yùn)動(dòng)時(shí)間為t秒,試問存在幾個(gè)t值能使△BEQ為等腰三角形?并直接寫出相應(yīng)t值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,DAB的中點(diǎn),ECD的中點(diǎn), 過點(diǎn)CCF//ABAE的延長線于點(diǎn)F,連接BF

(1) 求證:DBCF;

(2) 如果ACBC,試判斷四邊形BDCF的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以等邊的一邊為直徑的半圓于點(diǎn),交于點(diǎn),若,則陰影部分的面積是( 。

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與探究:如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖象與軸交于兩點(diǎn),點(diǎn)在點(diǎn)的左側(cè),與軸交于點(diǎn),點(diǎn)是直線下方拋物線上的一個(gè)動(dòng)點(diǎn).

1)求直線的解析式;

2)連接,,并將沿軸對(duì)折,得到四邊形.是否存在點(diǎn),使四邊形為菱形?若存在,求出此時(shí)點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由;

3)當(dāng)點(diǎn)運(yùn)動(dòng)到什么位置時(shí),四邊形的面積最大?求出此時(shí)點(diǎn)的坐標(biāo)和四邊形的最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為調(diào)查我市民上班時(shí)最常用的交通工具的情況隨機(jī)抽取了部分市民進(jìn)行調(diào)查,要求被調(diào)查者從A:自行車,B:電動(dòng)車,C:公交車,D:家庭汽車;E.其他中選擇最常用的一項(xiàng).將所有調(diào)查結(jié)果整理后繪制成如下不完整計(jì)圖,請(qǐng)結(jié)合統(tǒng)計(jì)圖回答下列問題:

1)本次一共調(diào)查了   名市民;扇形統(tǒng)計(jì)圖中B項(xiàng)對(duì)應(yīng)的圓心角是   度;

2)補(bǔ)全條形統(tǒng)計(jì)圖;

3)若甲、乙兩人上班時(shí)從A、B、C、D四種交通工具中隨或畫樹狀圖的方法,求出甲、乙兩人恰好選擇同一種交通工具上班的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案