【題目】如圖,內(nèi)接于,的直徑,上一點(diǎn),弦于點(diǎn),弦于點(diǎn),連接,,且.

1)求證:;

2)若,,求的長(zhǎng).

【答案】(1)詳見(jiàn)解析;(2)

【解析】

1)證法一:連接,利用圓周角定理得到,從而證明,然后利用同弧所對(duì)的圓周角相等及三角形外角的性質(zhì)得到,從而使問(wèn)題得解;證法二:連接,,由圓周角定理得到,從而判定,得到,然后利用圓內(nèi)接四邊形對(duì)角互補(bǔ)可得,從而求得,使問(wèn)題得解;

2)首先利用勾股定理和三角形面積求得AG的長(zhǎng),解法一:過(guò)點(diǎn)于點(diǎn),利用勾股定理求GH,CHCD的長(zhǎng);解法二:過(guò)點(diǎn)于點(diǎn),利用AA定理判定,然后根據(jù)相似三角形的性質(zhì)列比例式求解.

1)證法一:連接.

的直徑,

,∴

.

,

.

證法二:連接,.

的直徑,

,

四邊形內(nèi)接于,

.

2)解:在中,,,,

根據(jù)勾股定理得.

連接,

的直徑,

四邊形是平行四邊形.

.

中,

,

解法一:過(guò)點(diǎn)于點(diǎn)

中,,

中,

中,

解法二:過(guò)點(diǎn)于點(diǎn)

四邊形為矩形

.

四邊形為平行四邊形,

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠BAD=90°,AB=ADCB=CD,一個(gè)以點(diǎn)C為頂點(diǎn)的45°角繞點(diǎn)C旋轉(zhuǎn),角的兩邊與BADA交于點(diǎn)M,N,與BA,DA的延長(zhǎng)線交于點(diǎn)EF,連接AC.

1)在∠FCE旋轉(zhuǎn)的過(guò)程中,當(dāng)∠FCA=ECA時(shí),如圖1,求證:AE=AF;

2)在∠FCE旋轉(zhuǎn)的過(guò)程中,當(dāng)∠FCA≠ECA時(shí),如圖2,如果∠B=30°CB=2,用等式表示線段AE,AF之間的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,S是矩形ABCDAD邊上一點(diǎn),點(diǎn)E以每秒kcm的速度沿折線BSSDDC勻速運(yùn)動(dòng),同時(shí)點(diǎn)F從點(diǎn)C出發(fā)點(diǎn),以每秒1cm的速度沿邊CB勻速運(yùn)動(dòng).已知點(diǎn)F運(yùn)動(dòng)到點(diǎn)B時(shí),點(diǎn)E也恰好運(yùn)動(dòng)到點(diǎn)C,此時(shí)動(dòng)點(diǎn)E,F同時(shí)停止運(yùn)動(dòng).設(shè)點(diǎn)EF出發(fā)t秒時(shí),△EBF的面積為.已知yt的函數(shù)圖像如圖2所示.其中曲線OMNP為兩段拋物線,MN為線段.則下列說(shuō)法:

①點(diǎn)E運(yùn)動(dòng)到點(diǎn)S時(shí),用了2.5秒,運(yùn)動(dòng)到點(diǎn)D時(shí)共用了4秒;

②矩形ABCD的兩鄰邊長(zhǎng)為BC6cm,CD4cm

sinABS;

④點(diǎn)E的運(yùn)動(dòng)速度為每秒2cm.其中正確的是(  )

A.①②③B.①③④C.①②④D.②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們把一條拋物線上橫坐標(biāo)與縱坐標(biāo)相等的點(diǎn)叫做這條拋物線的不動(dòng)點(diǎn).如圖,在平面直角坐標(biāo)系xOy中,已知拋物線yx22x,其頂點(diǎn)為A

1)試求拋物線yx22x不動(dòng)點(diǎn)的坐標(biāo);

2)平移拋物線yx22x,使所得新拋物線的頂點(diǎn)B是該拋物線的不動(dòng)點(diǎn),其對(duì)稱(chēng)軸與x軸交于點(diǎn)C,且四邊形OABC是梯形,求新拋物線的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】永農(nóng)化工廠以每噸800元的價(jià)格購(gòu)進(jìn)一批化工原料,加工成化工產(chǎn)品進(jìn)行銷(xiāo)售,已知每1噸化工原料可以加工成化工產(chǎn)品0.8噸,該廠預(yù)計(jì)銷(xiāo)售化工產(chǎn)品不超過(guò)50噸時(shí)每噸售價(jià)為1600元,超過(guò)50噸時(shí),每超過(guò)1噸產(chǎn)品,銷(xiāo)售所有的化工產(chǎn)品每噸價(jià)格均會(huì)降低4元,設(shè)該化工廠生產(chǎn)并銷(xiāo)售了x噸化工產(chǎn)品.

1)用x的代數(shù)式表示該廠購(gòu)進(jìn)化工原料  噸;

2)當(dāng)x50時(shí),設(shè)該廠銷(xiāo)售完化工產(chǎn)品的總利潤(rùn)為y,求y關(guān)于x的函數(shù)關(guān)系式;

3)如果要求總利潤(rùn)不低于38400元,那么該廠購(gòu)進(jìn)化工原料的噸數(shù)應(yīng)該控制在什么范圍?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】光明中學(xué)以“賞中華詩(shī)詞、尋文化基因、品生活之美”為基本宗旨舉辦首屆《詩(shī)詞大會(huì)》,九年級(jí)2班的馬小梅晉級(jí)總決賽,比賽過(guò)程分兩個(gè)環(huán)節(jié),參賽選手須在每個(gè)環(huán)節(jié)中各選擇一道題目.

第一環(huán)節(jié):橫掃千軍、你說(shuō)我猜、初級(jí)飛花令,(分別用)表示;

第二環(huán)節(jié):出口成詩(shī)、飛花令、超級(jí)飛花令、詩(shī)詞接龍(分別用表示).

1)請(qǐng)用畫(huà)樹(shù)狀圖或列表的方法表示馬小梅參加總決賽抽取題目的所有可能結(jié)果;

2)求馬小梅參加總決賽抽取題目都是飛花令題目(初級(jí)飛花令、飛花令、超級(jí)飛花令)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知等腰三角形ABC的底角為30°,以BC為直徑的⊙O與底邊AB交于點(diǎn)D,過(guò)DDEAC,垂足為E

1)證明:DE為⊙O的切線;

2)連接OE,若BC=4,求OEC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】20191227日,我國(guó)成功發(fā)射了長(zhǎng)征五號(hào)遙三運(yùn)載火箭.如圖,長(zhǎng)征五號(hào)運(yùn)載火箭從地面處垂直向上發(fā)射,當(dāng)火箭到達(dá)處時(shí),從位于地面處的雷達(dá)站測(cè)得此時(shí)仰角,當(dāng)火箭繼續(xù)升空到達(dá)處時(shí),從位于地面處的雷達(dá)站測(cè)得此時(shí)仰角,已知.

1)求的長(zhǎng);

2)若長(zhǎng)征五號(hào)運(yùn)載火箭在處進(jìn)行程序轉(zhuǎn)彎,且,求雷達(dá)站到其正上方點(diǎn)的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】先鋒中學(xué)數(shù)學(xué)課題組為了了解初中學(xué)生閱讀數(shù)學(xué)教科書(shū)的現(xiàn)狀,隨機(jī)抽取某校部分初中學(xué)生進(jìn)行調(diào)查,調(diào)查結(jié)果分為重視、一般、不重視、說(shuō)不清楚四種情況(依次用A、BC、D表示),依據(jù)相關(guān)數(shù)據(jù)繪制成以下不完整的統(tǒng)計(jì)表和統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖表中的信息解答下列問(wèn)題:

類(lèi)別

頻數(shù)

頻率

重視

a

0.25

一般

60

0.3

不重視

b

c

說(shuō)不清楚

10

0.05

1)求樣本容量及表格中a,bc的值,并補(bǔ)全統(tǒng)計(jì)圖;

2)若該校共有2000名學(xué)生,請(qǐng)估計(jì)該校不重視閱讀數(shù)學(xué)教科書(shū)的學(xué)生人數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案