【題目】小明一家三口國慶節(jié)隨旅游團(tuán)去九寨溝旅游,共花費(fèi)人民幣5600元,他把旅途費(fèi)用支出情況制成了如下的統(tǒng)計(jì)圖.請(qǐng)你根據(jù)統(tǒng)計(jì)圖解決下列問題:
(1)哪一部分支出的費(fèi)用占整個(gè)支出的 ?
(2)小明一家在食宿上用去多少元?
(3)小明一家支出的路費(fèi)共多少元?
【答案】
(1)解:∵根據(jù)購物費(fèi)用在扇形統(tǒng)計(jì)圖中的圓心角是90°, = ,
∴購物支出的費(fèi)用占整個(gè)支出的
(2)解:∵共花費(fèi)人民幣5600元,食宿占總費(fèi)用的30%,
∴小明一家在食宿上用=5600×30%=1680(元)
(3)解:5600×(1﹣30%﹣25%)
=5600×45%
=2520(元).
答:小明一家支出的路費(fèi)共2520元
【解析】(1)根據(jù)購物費(fèi)用在扇形統(tǒng)計(jì)圖中的圓心角是90°,得到購物支出的費(fèi)用占整個(gè)支出的;(2)由共花費(fèi)人民幣5600元,食宿占總費(fèi)用的30%,得到小明一家在食宿上的費(fèi)用;(3)根據(jù)扇形圖得到路費(fèi)的百分比,求出小明一家支出的路費(fèi).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線(m>0)交y軸于點(diǎn)C,CA⊥y軸,交拋物線于點(diǎn)A,點(diǎn)B在拋物線上,且在第一象限內(nèi),BE⊥y軸,交y軸于點(diǎn)E,交AO的延長線于點(diǎn)D,BE=2AC.
(1)用含m的代數(shù)式表示BE的長.
(2)當(dāng)m=時(shí),判斷點(diǎn)D是否落在拋物線上,并說明理由.
(3)若AG∥y軸,交OB于點(diǎn)F,交BD于點(diǎn)G.
①若△DOE與△BGF的面積相等,求m的值.
②連結(jié)AE,交OB于點(diǎn)M,若△AMF與△BGF的面積相等,則m的值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了掌握我校初中二年級(jí)女同學(xué)身高情況,從中抽測(cè)了60名女同學(xué)的身高,這個(gè)問題中的總體是____________________,樣本是____________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:C是線段AB所在平面內(nèi)任意一點(diǎn),分別以AC、BC為邊,在AB同側(cè)作等邊三角形ACE和BCD,聯(lián)結(jié)AD、BE交于點(diǎn)P.
(1)如圖1,當(dāng)點(diǎn)C在線段AB上移動(dòng)時(shí),線段AD與BE的數(shù)量關(guān)系是: .
(2)如圖2,當(dāng)點(diǎn)C在直線AB外,且∠ACB<120°,上面的結(jié)論是否還成立?若成立請(qǐng)證明,不成立說明理由.
(3)在(2)的條件下,∠APE大小是否隨著∠ACB的大小發(fā)生變化而發(fā)生變化,若變化寫出變化規(guī)律,若不變,請(qǐng)求出∠APE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列運(yùn)算正確的是( 。
A.x3+x2=x5B.x3x2=x6
C.(﹣x3)2÷x5=1D.(﹣x)3÷(﹣x)2=﹣x
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題情境:如圖1,AB∥CD,∠PAB=130°,∠PCD=120°.求∠APC度數(shù).
(1)小明的思路是:如圖2,過P作PE∥AB,通過平行線性質(zhì),可得∠APC= .
問題遷移:如圖3,AD∥BC,點(diǎn)P在射線OM上運(yùn)動(dòng),∠ADP=∠α,∠BCP=∠β.
(2)當(dāng)點(diǎn)P在A、B兩點(diǎn)之間運(yùn)動(dòng)時(shí),∠CPD、∠α、∠β之間有何數(shù)量關(guān)系?請(qǐng)說明理由.
(3)如果點(diǎn)P在A、B兩點(diǎn)外側(cè)運(yùn)動(dòng)時(shí)(點(diǎn)P與點(diǎn)A、B、O三點(diǎn)不重合),請(qǐng)你直接寫出∠CPD、∠α、∠β之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在數(shù)軸上A點(diǎn)表示數(shù)a,B點(diǎn)表示數(shù)b,C點(diǎn)表示數(shù)c,且a、c滿足|a+3|+(c﹣9)2=0.
(1)a= , c=;
(2)如圖所示,在(1)的條件下,若點(diǎn)A與點(diǎn)B之間的距離表示為AB=|a﹣b|,點(diǎn)B與點(diǎn)C之間的距離表示為BC=|b﹣c|,點(diǎn)B在點(diǎn)A、C之間,且滿足BC=2AB,則b=;
(3)在(1)(2)的條件下,若點(diǎn)P為數(shù)軸上一動(dòng)點(diǎn),其對(duì)應(yīng)的數(shù)為x,當(dāng)代數(shù)式|x﹣a|+|x﹣b|+|x﹣c|取得最小值時(shí),此時(shí)x= , 最小值為;
(4)在(1)(2)的條件下,若在點(diǎn)B處放一擋板,一小球甲從點(diǎn)A處以1個(gè)單位/秒的速度向左運(yùn)動(dòng);同時(shí)另一小球乙從點(diǎn)C處以2個(gè)單位/秒的速度也向左運(yùn)動(dòng),在碰到擋板后(忽略球的大小,可看作一點(diǎn))以原來的速度向相反的方向運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t(秒),請(qǐng)表示出甲、乙兩小球之間的距離d(用t的代數(shù)式表示).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com