【題目】如圖,AB是⊙O的直徑,直線DA與⊙O相切于點(diǎn)A,DO交⊙O于點(diǎn)C,連接BC,若∠ABC=21°,則∠ADC的度數(shù)為( )
A.46°
B.47°
C.48°
D.49°
【答案】C
【解析】解:∵OB=OC,
∴∠B=∠BCO=21°,
∴∠AOD=∠B+∠BCO=21°+21°=42°,
∵AB是⊙O的直徑,直線DA與⊙O相切與點(diǎn)A,
∴∠OAD=90°,
∴∠ADC=90°﹣∠AOD=90°﹣42°=48°.
所以答案是:C.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解三角形的外角(三角形一邊與另一邊的延長線組成的角,叫三角形的外角;三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和;三角形的一個外角大于任何一個和它不相鄰的內(nèi)角),還要掌握切線的性質(zhì)定理(切線的性質(zhì):1、經(jīng)過切點(diǎn)垂直于這條半徑的直線是圓的切線2、經(jīng)過切點(diǎn)垂直于切線的直線必經(jīng)過圓心3、圓的切線垂直于經(jīng)過切點(diǎn)的半徑)的相關(guān)知識才是答題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,分別為邊的中點(diǎn),是對角線,過點(diǎn)作交的延長線于點(diǎn).
(1)求證:;
(2)若,求證:四邊形是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:平行四邊形ABCD的兩邊AB,AD的長是關(guān)于x的方程x2﹣mx+﹣=0的兩個實(shí)數(shù)根.
(1)m為何值時,四邊形ABCD是菱形?求出這時菱形的邊長;
(2)若AB的長為2,那么ABCD的周長是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個頂點(diǎn)坐標(biāo)為A(﹣3,4),B(﹣4,2),C(﹣2,1),△ABC繞原點(diǎn)逆時針旋轉(zhuǎn)90°,得到△A1B1C1 , △A1B1C1向右平移6個單位,再向上平移2個單位得到△A2B2C2 .
(1)畫出△A1B1Cl和△A2B2C2;
(2)P(a,b)是△ABC的AC邊上一點(diǎn),△ABC經(jīng)旋轉(zhuǎn)、平移后點(diǎn)P的對應(yīng)點(diǎn)分別為P1、P2 , 請寫出點(diǎn)P1、P2的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面的統(tǒng)計(jì)圖表示某體校射擊隊(duì)甲、乙兩名隊(duì)員射擊比賽的成績,根據(jù)統(tǒng)計(jì)圖中的信息,下列結(jié)論正確的是( 。
A. 甲隊(duì)員成績的平均數(shù)比乙隊(duì)員的大
B. 乙隊(duì)員成績的平均數(shù)比甲隊(duì)員的大
C. 甲隊(duì)員成績的中位數(shù)比乙隊(duì)員的大
D. 甲隊(duì)員成績的方差比乙隊(duì)員的大
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,⊙A的圓心A的坐標(biāo)為(﹣1,0),半徑為1,點(diǎn)P為直線y=﹣ x+3上的動點(diǎn),過點(diǎn)P作⊙A的切線,切點(diǎn)為Q,則切線長PQ的最小值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在□ABCD中,AB=10,BC=5,BN平分∠ABC交CD于點(diǎn)N,交AD的延長線于點(diǎn)M,則下列結(jié)論:①DM=5;②線段BM、CD互相平分;③BD⊥AM;④△BCN是等邊三角形;⑤AN⊥BM,其中正確的有______________(填序號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC≌△ADE,BC的延長線交AD于點(diǎn)M,交DE于點(diǎn)F.若∠D=25°,∠AED=105°,∠DAC=10°,求∠DFB的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com