【題目】如圖1,等腰△ABC中,AC=BC,點(diǎn)O在AB邊上,以O為圓心的圓經(jīng)過(guò)點(diǎn)C,交AB邊于點(diǎn)D,EF為⊙O的直徑,EF⊥BC于點(diǎn)G,且D是的中點(diǎn).
(1)求證:AC是⊙O的切線;
(2)如圖2,延長(zhǎng)CB交⊙O于點(diǎn)H,連接HD交OE于點(diǎn)P,連接CF,求證:CF=DO+OP;
(3)在(2)的條件下,連接CD,若tan∠HDC=,CG=4,求OP的長(zhǎng).
【答案】(1)見(jiàn)解析;(2)見(jiàn)解析;(3)
【解析】試題分析: 連接OC. 得到 得出即可證明AC是的切線.
如圖2中,連接OC,首先證明再證明點(diǎn)P在以F為圓心FC為半徑的圓上,即可解決問(wèn)題;
在中,利用 求出根據(jù)勾股定理求得 在Rt 中,根據(jù)勾股定理得, 利用中的結(jié)論即可求出的長(zhǎng)度.
試題解析:(1)證明:如圖1中,連接OC.
∵
∴
∵
∴
∴
∵點(diǎn)D是的中點(diǎn),
∴=,
∴
∴
∴
∴
∴AC是的切線,
(2)證明:如圖2中,連接OC,
∵
∴
∴EF垂直平分HC,
∴
∵
∵
∴
∵
∴
∴點(diǎn)P在以F為圓心FC為半徑的圓上,
∴
∵
∴
即
(3)如圖3,連接CO并延長(zhǎng)交于M,連接,
∴
∵于G,
在中,
∴
∴
∴
∴
∵
∴OG∥MH,
∵
∴
∴
在Rt 中,根據(jù)勾股定理得,
由(2)知,
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角坐標(biāo)系平面內(nèi),函數(shù)y=(x>0,m是常數(shù))的圖象經(jīng)過(guò)A(1,4)、B(a,b),其中a>1,過(guò)點(diǎn)A作x軸的垂線,垂足為C,過(guò)點(diǎn)B作y軸的垂線,垂足為D,連接AD,AB,DC,CB.
(1)求反比例函數(shù)解析式;
(2)當(dāng)△ABD的面積為S,試用a的代數(shù)式表示求S.
(3)當(dāng)△ABD的面積為2時(shí),判斷四邊形ABCD的形狀,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于反比例函數(shù),下列說(shuō)法中不正確的是( )
A. 圖像經(jīng)過(guò)點(diǎn)(1.-2)
B. 圖像分布在第二第四象限
C. x>0時(shí),y隨x增大而增大
D. 若點(diǎn)A()B()在圖像上,若,則
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下面材料:點(diǎn)A、B在數(shù)軸上分別表示有理數(shù)a、b,表示A、B兩點(diǎn)之間的距離。當(dāng)A、B兩點(diǎn)中有一點(diǎn)在原點(diǎn)時(shí)(假設(shè)A在原點(diǎn)),如圖①,;
當(dāng)A、B兩點(diǎn)都在原點(diǎn)右側(cè)時(shí),如圖②,;
當(dāng)AB兩點(diǎn)都在原點(diǎn)左側(cè)時(shí),如圖③,;
當(dāng)AB兩點(diǎn)在原點(diǎn)兩側(cè)時(shí),如圖④,;
請(qǐng)根據(jù)上述結(jié)論,回答下列問(wèn)題:
(1)數(shù)軸上表示2和5的兩點(diǎn)問(wèn)距離是______,數(shù)軸上表示2和-6的兩點(diǎn)間距高是_________,數(shù)軸上表示-1和3的兩點(diǎn)間距離是____________.
(2)數(shù)軸上表示x和-1的兩點(diǎn)A和B之間的距離可表示為_________,若|AB|=2,則x的值為_____________.
(3)當(dāng)取最小值時(shí),請(qǐng)寫(xiě)出所有符合條件的x的整數(shù)值_______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2018年3月,某市教育主管部門(mén)在初中生中開(kāi)展了“文明禮儀知識(shí)競(jìng)賽”活動(dòng),活動(dòng)結(jié)束后,隨機(jī)抽取了部分同學(xué)的成績(jī)(x均為整數(shù),總分100分),繪制了如下尚不完整的統(tǒng)計(jì)圖表.
調(diào)查結(jié)果統(tǒng)計(jì)表
組別 | 成績(jī)分組(單位:分) | 頻數(shù) | 頻率 |
A | 80≤x<85 | 50 | 0.1 |
B | 85≤x<90 | 75 | |
C | 90≤x<95 | 150 | c |
D | 95≤x≤100 | a | |
合計(jì) | b | 1 |
根據(jù)以上信息解答下列問(wèn)題:
(1)統(tǒng)計(jì)表中,a=_____,b=_____,c=_____;
(2)扇形統(tǒng)計(jì)圖中,m的值為_____,“C”所對(duì)應(yīng)的圓心角的度數(shù)是_____;
(3)若參加本次競(jìng)賽的同學(xué)共有5000人,請(qǐng)你估計(jì)成績(jī)?cè)?/span>95分及以上的學(xué)生大約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了迎接期中考試,小強(qiáng)對(duì)考試前剩余時(shí)間作了一個(gè)安排,他把計(jì)劃復(fù)習(xí)重要內(nèi)容的時(shí)間用一個(gè)四邊形圈起來(lái).如圖,他發(fā)現(xiàn),用這樣的四邊形圈起來(lái)五個(gè)數(shù)的和恰好是5的倍數(shù),他又試了幾個(gè)位置,都符合這樣的特征。
(1)若設(shè)這五個(gè)數(shù)中間的數(shù)為a,請(qǐng)你用整式的加減說(shuō)明其中的道理.
(2)這五個(gè)數(shù)的和能為150嗎?若能,請(qǐng)寫(xiě)出中間那個(gè)數(shù),若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:梯形中,,聯(lián)結(jié)(如圖1). 點(diǎn)沿梯形的邊從點(diǎn)移動(dòng),設(shè)點(diǎn)移動(dòng)的距離為,.
(1)求證:;
(2)當(dāng)點(diǎn)從點(diǎn)移動(dòng)到點(diǎn)時(shí),與的函數(shù)關(guān)系(如圖2)中的折線所示. 試求的長(zhǎng);
(3)在(2)的情況下,點(diǎn)從點(diǎn)移動(dòng)的過(guò)程中,是否可能為等腰三角形?若能,請(qǐng)求出所有能使為等腰三角形的的取值;若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖(1),P為△ABC所在平面上一點(diǎn),且∠APB=∠BPC=∠CPA=120°,則點(diǎn)P叫做△ABC的費(fèi)馬點(diǎn).
(1)如果點(diǎn)P為銳角△ABC的費(fèi)馬點(diǎn),且∠ABC=60°.
①求證:△ABP∽△BCP;
②若PA=3,PC=4,則PB= .
(2)已知銳角△ABC,分別以AB、AC為邊向外作正△ABE和正△ACD,CE和BD 相交于P點(diǎn).如圖(2)
①求∠CPD的度數(shù);
②求證:P點(diǎn)為△ABC的費(fèi)馬點(diǎn).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com