【題目】2018年3月,某市教育主管部門在初中生中開展了“文明禮儀知識(shí)競(jìng)賽”活動(dòng),活動(dòng)結(jié)束后,隨機(jī)抽取了部分同學(xué)的成績(jī)(x均為整數(shù),總分100分),繪制了如下尚不完整的統(tǒng)計(jì)圖表.
調(diào)查結(jié)果統(tǒng)計(jì)表
組別 | 成績(jī)分組(單位:分) | 頻數(shù) | 頻率 |
A | 80≤x<85 | 50 | 0.1 |
B | 85≤x<90 | 75 | |
C | 90≤x<95 | 150 | c |
D | 95≤x≤100 | a | |
合計(jì) | b | 1 |
根據(jù)以上信息解答下列問題:
(1)統(tǒng)計(jì)表中,a=_____,b=_____,c=_____;
(2)扇形統(tǒng)計(jì)圖中,m的值為_____,“C”所對(duì)應(yīng)的圓心角的度數(shù)是_____;
(3)若參加本次競(jìng)賽的同學(xué)共有5000人,請(qǐng)你估計(jì)成績(jī)?cè)?/span>95分及以上的學(xué)生大約有多少人?
【答案】 225 500 0.3 45 108°
【解析】試題分析:(1)由A組頻數(shù)及其頻率求得總數(shù)b=500,根據(jù)各組頻數(shù)之和等于總數(shù)求得a,再由頻率=頻數(shù)÷總數(shù)可得c;
(2)D組人數(shù)除以總?cè)藬?shù)得出其百分比即可得m的值,再用360°乘C組的頻率可得;
(3)總?cè)藬?shù)乘以樣本中D組頻率可得.
試題解析:解:(1)b=50÷0.1=500,a=500﹣(50+75+150)=225,c=150÷500=0.3;
故答案為:225,500,0.3;
(2)m%=×100%=45%,∴m=45,“C”所對(duì)應(yīng)的圓心角的度數(shù)是360°×0.3=108°.故答案為:45,108°;
(3)5000×0.45=2250.
答:估計(jì)成績(jī)?cè)?/span>95分及以上的學(xué)生大約有2250人.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解:課外興趣小組活動(dòng)時(shí),老師提出了如下問題:
如圖1,△ABC中,若AB=5,AC=3,求BC邊上的中線AD的取值范圍.
小明在組內(nèi)經(jīng)過合作交流,得到了如下的解決方法:延長(zhǎng)AD到E,使得DE=AD,再連接BE(或?qū)?/span>△ACD繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)180°得到△EBD),把AB、AC、2AD集中在△ABE中,利用三角形的三邊關(guān)系可得2<AE<8,則1<AD<4.
感悟:解題時(shí),條件中若出現(xiàn)“中點(diǎn)”“中線”字樣,可以考慮構(gòu)造以中點(diǎn)為對(duì)稱中心的中心對(duì)稱圖形,把分散的已知條件和所求證的結(jié)論集中到同一個(gè)三角形中.
(1)問題解決:受到(1)的啟發(fā),請(qǐng)你證明下面命題:如圖2,在△ABC中,D是BC邊上的中點(diǎn),DE⊥DF,DE交AB于點(diǎn)E,DF交AC于點(diǎn)F,連接EF.
①求證:BE+CF>EF;②若∠A=90°,探索線段BE、CF、EF之間的等量關(guān)系,并加以證明;
(2)問題拓展:如圖3,在平行四邊形ABCD中,AD=2AB,F是AD的中點(diǎn),作CE⊥AB,垂足E在線段AB上,聯(lián)結(jié)EF、CF,那么下列結(jié)論①∠DCF=∠BCD;②EF=CF;③S△BEC=2S△CEF;④∠DFE=3∠AEF.中一定成立是 (填序號(hào)).
圖1 圖2 圖3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將線段AB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到線段A′B′,那么A(﹣2,5)的對(duì)應(yīng)點(diǎn)A′的坐標(biāo)是________ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖∠1=∠2,CF⊥AB,DE⊥AB,求證:FG∥BC.
證明:∵CF⊥AB,DE⊥AB (已知)
∴∠BED=90°,∠BFC=90°( )
∴∠BED=∠BFC ( )
∴ED∥FC ( )
∴∠1=∠BCF ( )
∵∠2=∠1 ( 已知 )
∴∠2=∠BCF ( )
∴FG∥BC ( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=AC,∠BAC=150°,點(diǎn)A到BC的距離為1,與AB重合的一條射線AP,從AB開始,以每秒15°的速度繞點(diǎn)A逆時(shí)針勻速旋轉(zhuǎn),到達(dá)AC后立即以相同的速度返回AB,到達(dá)后立即重復(fù)上述旋轉(zhuǎn)過程,設(shè)AP與BC邊的交點(diǎn)為M,旋轉(zhuǎn)2019秒時(shí),BM= , CM= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有下列等式:①由a=b,得5﹣2a=5﹣2b;②由a=b,得ac=bc;③由a=b,得;④由,得3a=2b;
⑤由a2=b2,得a=b.其中正確的是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知多項(xiàng)式ax5+bx3+3x+c,當(dāng)x=0時(shí),該代數(shù)式的值為﹣1.
(1)求c的值;
(2)已知當(dāng)x=3時(shí),該式子的值為9,試求當(dāng)x=﹣3時(shí)該式子的值;
(3)在第(2)小題的已知條件下,若有3a=5b成立,試比較a+b與c的大小?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是一張平行四邊形紙片ABCD,要求利用所學(xué)知識(shí)將它變成一個(gè)菱形,甲、乙兩位同學(xué)的作法分別如下:
對(duì)于甲、乙兩人的作法,可判斷( )
A. 甲正確,乙錯(cuò)誤 B. 甲錯(cuò)誤,乙正確
C. 甲、乙均正確 D. 甲、乙均錯(cuò)誤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若a,b,c是直角三角形的三條邊長(zhǎng),斜邊c上的高的長(zhǎng)是h,給出下列結(jié)論:
①以a2,b2,c2的長(zhǎng)為邊的三條線段能組成一個(gè)三角形
②以, , 的長(zhǎng)為邊的三條線段能組成一個(gè)三角形
③以a+b,c+h,h的長(zhǎng)為邊的三條線段能組成直角三角形
④以, , 的長(zhǎng)為邊的三條線段能組成直角三角形
其中所有正確結(jié)論的序號(hào)為______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com