精英家教網 > 初中數學 > 題目詳情
如圖,在菱形ABCD中,∠BAD=80°,AB的垂直平分線交對角線AC于點F,E為垂足,連接DF,則∠CDF的度數=    度.
【答案】分析:根據菱形的性質求出∠ADC=100°,再根據垂直平分線的性質得出AF=DF,從而計算出∠CDF的值.
解答:解:連接BD,BF
∵∠BAD=80°
∴∠ADC=100°
又∵EF垂直平分AB,AC垂直平分BD
∴AF=BF,BF=DF
∴AF=DF
∴∠FAD=∠FDA=40°
∴∠CDF=100°-40°=60°.
故答案為:60.
點評:此題主要考查線段的垂直平分線的性質和菱形的性質.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網如圖:在菱形ABCD中,AC=6,BD=8,則菱形的邊長為( 。
A、5B、10C、6D、8

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在菱形ABCD中,∠ABC=60°,E為AB邊的中點,P為對角線BD上任意一點,AB=4,則PE+PA的最小值為
 
精英家教網

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•河南)如圖,在菱形ABCD中,AB=2,∠DAB=60°,點E是AD邊的中點.點M是AB邊上一動點(不與點A重合),延長ME交射線CD于點N,連接MD、AN.
(1)求證:四邊形AMDN是平行四邊形;
(2)填空:①當AM的值為
1
1
時,四邊形AMDN是矩形;
           ②當AM的值為
2
2
時,四邊形AMDN是菱形.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•攀枝花)如圖,在菱形ABCD中,DE⊥AB于點E,cosA=
35
,BE=4,則tan∠DBE的值是
2
2

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在菱形ABCD中,AE⊥BC,垂足為F,EC=1,∠B=30°,求菱形ABCD的周長.

查看答案和解析>>

同步練習冊答案