【題目】如圖,AD∥BC,∠A=90°,E是AB上的一點(diǎn),且AD=BE,∠1=∠2.
(1)Rt△ADE與Rt△BEC全等嗎?請(qǐng)寫出必要的推理過(guò)程;
(2)△CED是不是直角三角形?請(qǐng)說(shuō)明理由;
(3)若已知AD=6,AB=14,請(qǐng)求出請(qǐng)求出△CED的面積.
【答案】(1)全等,見(jiàn)解析;(2)是,理由見(jiàn)解析;(3)50
【解析】
(1)由∠1=∠2,可得DE=CD,根據(jù)證明直角三角形全等的“HL”定理,證明即可;
(2)根據(jù)題意,∠AED+∠ADE=90°,∠BEC+∠BCE=90°,又∠AED=∠BCE,∠ADE=∠BEC,所以,∠AED+∠BEC=90°,即可證得∠DEC=90°,即可得出;
(3)由(1)可得BE=AD,所以可求出AE,根據(jù)勾股定理可求出DE,再由已知∠1=∠2和(2)可知)△CED是等腰直角三角形,從而求出△CED的面積
(1)Rt△ADE≌Rt△BEC;
理由如下:
∵∠1=∠2,
∴DE=CE,又∠A=∠B=90°,AE=BC
∴在Rt△ADE和Rt△BEC中,
DE=CE、AE=BC,
∴Rt△ADE≌Rt△BEC;
(2))△CDE是直角三角形;
理由如下:
∵Rt△ADE≌Rt△BEC,
∴∠AED=∠BCE,∠ADE=∠BEC,
又∵∠AED+∠ADE=90°,∠BEC+∠BCE=90°,
∴2(∠AED+∠BEC)=180°,
∴∠AED+∠BEC=90°,
∴∠DEC=90°,
∴△CDE是直角三角形;
(3)已知AD=BE=6,
∴AE=AB﹣BE=AB﹣AD=14﹣6=8,
在Rt△ADE中,
DE==10,
又∠1=∠2,
∴DE=CE=10,
再由(2)得:
△CED的面積為:DECE=×10×10=50.
所以△CED的面積為:50.
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,AD⊥BC于D點(diǎn),E、F分別為DB、DC的中點(diǎn),則圖中共有全等三角形 對(duì).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,CD為⊙O的直徑,點(diǎn)B在⊙O上,連接BC、BD,過(guò)點(diǎn)B的切線AE與CD的延長(zhǎng)線交于點(diǎn)A, ,OE交BC于點(diǎn)F.
(1)求證:OE∥BD;
(2)當(dāng)⊙O的半徑為5, 時(shí),求EF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】折紙的思考.
(操作體驗(yàn))
用一張矩形紙片折等邊三角形.
第一步,對(duì)折矩形紙片ABCD(AB>BC)(圖①),使AB與DC重合,得到折痕EF,把紙片展平(圖②).
第二步,如圖③,再一次折疊紙片,使點(diǎn)C落在EF上的P處,并使折痕經(jīng)過(guò)點(diǎn)B,得到折痕BG,折出PB,PC,得到△PBC.
(1)說(shuō)明△PBC是等邊三角形.
(數(shù)學(xué)思考)
(2)如圖④,小明畫出了圖③的矩形ABCD和等邊三角形PBC,他發(fā)現(xiàn),在矩形ABCD中把△PBC經(jīng)過(guò)圖形變化,可以得到圖⑤中的更大的等邊三角形,請(qǐng)描述圖形變化的過(guò)程.
(3)已知矩形一邊長(zhǎng)為3cm,另一邊長(zhǎng)為a cm,對(duì)于每一個(gè)確定的a的值,在矩形中都能畫出最大的等邊三角形,請(qǐng)畫出不同情形的示意圖,并寫出對(duì)應(yīng)的a的取值范圍.
(問(wèn)題解決)
(4)用一張正方形鐵片剪一個(gè)直角邊長(zhǎng)分別為4cm和1cm的直角三角形鐵片,所需正方形鐵片的邊長(zhǎng)的最小值為 cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,∠ABD、∠CDB的平分線BE、DF分別交邊AD、BC于點(diǎn)E、F.
(1)求證:四邊形BEDF是平行四邊形;
(2)當(dāng)∠ABE為多少度時(shí),四邊形BEDF是菱形?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知A1(1,0),A2(1,﹣1),A3(﹣1,﹣1),A4(﹣1,1),A5(2,1),…則點(diǎn)A2017的坐標(biāo)是( )
A.(505,504)B.(﹣503,﹣504 )C.(503,﹣503)D.(﹣504,504)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】近年來(lái),我國(guó)很多地區(qū)持續(xù)出現(xiàn)霧霾天氣.某社區(qū)為了調(diào)查本社區(qū)居民對(duì)霧霾天氣主要成因的認(rèn)識(shí)情況,隨機(jī)對(duì)該社區(qū)部分居民進(jìn)行了問(wèn)卷調(diào)查,要求居民從五個(gè)主要成因中只選擇其中的一項(xiàng),被調(diào)查居民都按要求填寫了問(wèn)卷.社區(qū)對(duì)調(diào)查結(jié)果進(jìn)行了整理,繪制了如下不完整的統(tǒng)計(jì)圖表.被調(diào)查居民選擇各選項(xiàng)人數(shù)統(tǒng)計(jì)表
霧霾天氣的主要成因 | 頻數(shù)(人數(shù)) |
A大氣氣壓低,空氣不流動(dòng) | m |
B地面灰塵大,空氣濕度低 | 40 |
C汽車尾氣排放 | n |
D工廠造成的污染 | 120 |
E其他 | 60 |
請(qǐng)根據(jù)圖表中提供的信息解答下列問(wèn)題:
(1)填空:m=________,n=________,扇形統(tǒng)計(jì)圖中C選項(xiàng)所占的百分比為________.
(2)若該社區(qū)居民約有6 000人,請(qǐng)估計(jì)其中會(huì)選擇D選項(xiàng)的居民人數(shù).
(3)對(duì)于“霧霾”這個(gè)環(huán)境問(wèn)題,請(qǐng)你用簡(jiǎn)短的語(yǔ)言發(fā)出倡議.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于數(shù)軸上的A、B、C三點(diǎn),給出如下定義:若其中一個(gè)點(diǎn)與其它兩個(gè)點(diǎn)的距離恰好滿足2倍的數(shù)量關(guān)系,則稱該點(diǎn)是其它兩個(gè)點(diǎn)的“至善點(diǎn)”.例如:若數(shù)軸上點(diǎn)A、B、C所表示的數(shù)分別為1、3、4,則點(diǎn)B是點(diǎn)A、C的“至善點(diǎn)”.
(1)若點(diǎn)A表示數(shù)﹣2,點(diǎn)B表示數(shù)2,下列各數(shù)、0、1、6所對(duì)應(yīng)的點(diǎn)分別為C1、C2、C3、C4,其中是點(diǎn)A、B的“至善點(diǎn)”的有 (填代號(hào));
(2)已知點(diǎn)A表示數(shù)﹣1,點(diǎn)B表示數(shù)3,點(diǎn)M為數(shù)軸上一個(gè)動(dòng)點(diǎn):
①若點(diǎn)M在點(diǎn)A的左側(cè),且點(diǎn)M是點(diǎn)A、B的“至善點(diǎn)”,求此時(shí)點(diǎn)M表示的數(shù)m;
②若點(diǎn)M在點(diǎn)B的右側(cè),點(diǎn)M、A、B中,有一個(gè)點(diǎn)恰好是其它兩個(gè)點(diǎn)的“至善點(diǎn)”,求出此時(shí)點(diǎn)M表示的數(shù)m.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)正兩位數(shù)的個(gè)位數(shù)字是a,十位數(shù)字比個(gè)位數(shù)字大2.
(1)列式表示這個(gè)兩位數(shù);
(2)把這個(gè)兩位數(shù)的十位上的數(shù)字與個(gè)位上的數(shù)字交換位置得到一個(gè)新的兩位數(shù),試說(shuō)明新數(shù)與原數(shù)的和能被22整除.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com