【題目】如圖,已知A11,0),A21,﹣1),A3(﹣1,﹣1),A4(﹣1,1),A521),則點(diǎn)A2017的坐標(biāo)是(

A.505504B.(﹣503,﹣504 C.503,﹣503D.(﹣504,504

【答案】A

【解析】

通過觀察可得出在第一象限的在格點(diǎn)的正方形的對(duì)角線上的點(diǎn)的橫坐標(biāo)依次加1,縱坐標(biāo)依次加1;在第二象限的點(diǎn)的橫坐標(biāo)依次加-1,縱坐標(biāo)依次加1,在第三象限的點(diǎn)的橫坐標(biāo)依次加-1,縱坐標(biāo)依次加-1,在第四象限的點(diǎn)的橫坐標(biāo)依次依次加1,縱坐標(biāo)依次加-1;第二、三、四象限的點(diǎn)的橫坐標(biāo)與縱坐標(biāo)的絕對(duì)值相等,并且第三、四象限的橫坐標(biāo)等于相鄰4的整數(shù)倍的各點(diǎn)除以4再加上1,由此可得出答案.

解:易得4的整數(shù)倍的各點(diǎn)都在第二象限,

A2017的坐標(biāo)在第一象限,

縱坐標(biāo)為:

橫坐標(biāo)為:

因此,A2017的坐標(biāo)為(505,504).

故選:A.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,對(duì)于任意三點(diǎn)A、B、C我們給出如下定義:橫長(zhǎng)a:三點(diǎn)中橫坐標(biāo)的最大值與最小值的差,縱長(zhǎng)b:三點(diǎn)中縱坐標(biāo)的最大值與最小值的差,若三點(diǎn)的橫長(zhǎng)與縱長(zhǎng)相等,我們稱這三點(diǎn)為正方點(diǎn).

例如:點(diǎn) (,0) ,點(diǎn) (1,1) ,點(diǎn) (, ),則、三點(diǎn)的橫長(zhǎng)=||=3,、、三點(diǎn)的縱長(zhǎng)=||=3. 因?yàn)?/span>=,所以、、三點(diǎn)為正方點(diǎn).

(1)在點(diǎn) (3,5) ,(3,) , (,)中,與點(diǎn)、為正方點(diǎn)的是 ;

(2)點(diǎn)P (0,t)軸上一動(dòng)點(diǎn),若,三點(diǎn)為正方點(diǎn),的值為 ;

(3)已知點(diǎn) (1,0).

①平面直角坐標(biāo)系中的點(diǎn)滿足以下條件:點(diǎn),,三點(diǎn)為正方點(diǎn),在圖中畫出所有符合條件的點(diǎn)組成的圖形;

②若直線上存在點(diǎn),使得,三點(diǎn)為正方點(diǎn),直接寫出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖3,小明有5張寫著不同數(shù)字的卡片,請(qǐng)你按要求抽出卡片,完成下列問題.

1)從中抽取2張卡片,使這2張卡片上數(shù)字的乘積最大,最大值是多少?寫出最大值的運(yùn)算式;

2)從中抽取2張卡片,使這2張卡片上數(shù)字相除的商最小,最小值是多少?寫出最小值的運(yùn)算式;

3)從中抽取除0以外的4張卡片,將這4個(gè)數(shù)字進(jìn)行加、減、乘、除、乘方混合運(yùn)算,每個(gè)數(shù)字只能用一次,使結(jié)果為24.寫出兩種運(yùn)算式子.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的是用4個(gè)全等的小長(zhǎng)方形與1個(gè)小正方形密鋪而成的正方形圖案.已知該圖案的面積為49,小正方形的面積為4,若分別用x,y(x >y)表示小長(zhǎng)方形的長(zhǎng)和寬,則下列關(guān)系式中不正確的是( )

A. x+y=7 B. x-y=2 C. x2 +y2=25 D. 4xy+4=49

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AD∥BC,∠A=90°,EAB上的一點(diǎn),且AD=BE,∠1=∠2

1Rt△ADERt△BEC全等嗎?請(qǐng)寫出必要的推理過程;

2△CED是不是直角三角形?請(qǐng)說明理由;

3)若已知AD=6AB=14,請(qǐng)求出請(qǐng)求出△CED的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠1,∠2互為補(bǔ)角,且∠3=B,

(1)求證:∠AFE=ACB

(2)CE平分∠ACB,且∠1=80°,∠3=45°,求∠AFE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某服裝廠生產(chǎn)一種西裝和領(lǐng)帶,西裝每套定價(jià)1200元,領(lǐng)帶每條定價(jià)140元.廠方在開展促銷活動(dòng)期間,可以同時(shí)向客戶提供兩種優(yōu)惠方案:

①買一套西裝送一條領(lǐng)帶

②西裝和領(lǐng)帶都按定價(jià)的付款,現(xiàn)某客戶要到該服裝廠購(gòu)買西裝20套,領(lǐng)帶條(超過20

1)若該客戶按方案①購(gòu)買,需付款_________元(用含的式子表示);若該客戶按方案②購(gòu)買,需付款_________元(用含的式子表示)

2)若,通過計(jì)算說明此時(shí)按哪種方案購(gòu)買較為合算?

3)若時(shí),你能給出一種更為省錢的購(gòu)買方案嗎?試寫出你的購(gòu)買方法,并計(jì)算出所需的錢數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A(m,2)在直線:y=2x上,過點(diǎn)A的直線x軸交于點(diǎn)B(4,0).

(1)求直線的解析式;

(2)己知點(diǎn)P.的坐標(biāo)為(n,0,過點(diǎn)P垂直x軸的直線與,分別交于點(diǎn)C,D,當(dāng)點(diǎn)C位于點(diǎn)D上方時(shí),求n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=AC,AB的垂直平分線DE分別交AC、AB于點(diǎn)D、E.

(1)若∠A=46°,求∠CBD的度數(shù);

(2)若AB=8,△CBD周長(zhǎng)為13,求BC的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案